<< Chapter < Page Chapter >> Page >
  • Explain the concept of resistivity.
  • Use resistivity to calculate the resistance of specified configurations of material.
  • Use the thermal coefficient of resistivity to calculate the change of resistance with temperature.

Material and shape dependence of resistance

The resistance of an object depends on its shape and the material of which it is composed. The cylindrical resistor in [link] is easy to analyze, and, by so doing, we can gain insight into the resistance of more complicated shapes. As you might expect, the cylinder’s electric resistance R size 12{R} {} is directly proportional to its length L size 12{L} {} , similar to the resistance of a pipe to fluid flow. The longer the cylinder, the more collisions charges will make with its atoms. The greater the diameter of the cylinder, the more current it can carry (again similar to the flow of fluid through a pipe). In fact, R size 12{R} {} is inversely proportional to the cylinder’s cross-sectional area A size 12{A} {} .

A cylindrical conductor of length L and cross section A is shown. The resistivity of the cylindrical section is represented as rho. The resistance of this cross section R is equal to rho L divided by A. The section of length L of cylindrical conductor is shown equivalent to a resistor represented by symbol R.
A uniform cylinder of length L size 12{L} {} and cross-sectional area A size 12{A} {} . Its resistance to the flow of current is similar to the resistance posed by a pipe to fluid flow. The longer the cylinder, the greater its resistance. The larger its cross-sectional area A size 12{A} {} , the smaller its resistance.

For a given shape, the resistance depends on the material of which the object is composed. Different materials offer different resistance to the flow of charge. We define the resistivity     ρ size 12{ρ} {} of a substance so that the resistance R size 12{R} {} of an object is directly proportional to ρ size 12{ρ} {} . Resistivity ρ size 12{ρ} {} is an intrinsic property of a material, independent of its shape or size. The resistance R size 12{R} {} of a uniform cylinder of length L size 12{L} {} , of cross-sectional area A size 12{A} {} , and made of a material with resistivity ρ size 12{ρ} {} , is

R = ρL A . size 12{R = { {ρL} over {A} } "."} {}

[link] gives representative values of ρ size 12{ρ} {} . The materials listed in the table are separated into categories of conductors, semiconductors, and insulators, based on broad groupings of resistivities. Conductors have the smallest resistivities, and insulators have the largest; semiconductors have intermediate resistivities. Conductors have varying but large free charge densities, whereas most charges in insulators are bound to atoms and are not free to move. Semiconductors are intermediate, having far fewer free charges than conductors, but having properties that make the number of free charges depend strongly on the type and amount of impurities in the semiconductor. These unique properties of semiconductors are put to use in modern electronics, as will be explored in later chapters.

Resistivities ρ size 12{ρ} {} Of various materials at 20º C
Material Resistivity ρ size 12{ρ} {} ( Ω m size 12{ %OMEGA cdot m} {} )
Conductors
Silver 1 . 59 × 10 8 size 12{1 "." "59" times "10" rSup { size 8{ - 8} } } {}
Copper 1 . 72 × 10 8 size 12{1 "." "72" times "10" rSup { size 8{ - 8} } } {}
Gold 2 . 44 × 10 8 size 12{2 "." "44" times "10" rSup { size 8{ - 8} } } {}
Aluminum 2 . 65 × 10 8 size 12{2 "." "65" times "10" rSup { size 8{ - 8} } } {}
Tungsten 5 . 6 × 10 8 size 12{5 "." 6 times "10" rSup { size 8{ - 8} } } {}
Iron 9 . 71 × 10 8 size 12{9 "." "71" times "10" rSup { size 8{ - 8} } } {}
Platinum 10 . 6 × 10 8 size 12{"10" "." 6 times "10" rSup { size 8{ - 8} } } {}
Steel 20 × 10 8 size 12{"20" times "10" rSup { size 8{ - 8} } } {}
Lead 22 × 10 8 size 12{"22" times "10" rSup { size 8{ - 8} } } {}
Manganin (Cu, Mn, Ni alloy) 44 × 10 8 size 12{"44" times "10" rSup { size 8{ - 8} } } {}
Constantan (Cu, Ni alloy) 49 × 10 8 size 12{"49" times "10" rSup { size 8{ - 8} } } {}
Mercury 96 × 10 8 size 12{"96" times "10" rSup { size 8{ - 8} } } {}
Nichrome (Ni, Fe, Cr alloy) 100 × 10 8 size 12{"100" times "10" rSup { size 8{ - 8} } } {}
Semiconductors Values depend strongly on amounts and types of impurities
Carbon (pure) 3.5 × 10 5
Carbon ( 3.5 60 ) × 10 5
Germanium (pure) 600 × 10 3
Germanium ( 1 600 ) × 10 3 size 12{ \( 1 - "600" \) times "10" rSup { size 8{ - 3} } } {}
Silicon (pure) 2300
Silicon 0.1–2300
Insulators
Amber 5 × 10 14 size 12{5 times "10" rSup { size 8{"14"} } } {}
Glass 10 9 10 14 size 12{"10" rSup { size 8{9} } - "10" rSup { size 8{"14"} } } {}
Lucite >10 13 size 12{>"10" rSup { size 8{"13"} } } {}
Mica 10 11 10 15 size 12{"10" rSup { size 8{"11"} } - "10" rSup { size 8{"15"} } } {}
Quartz (fused) 75 × 10 16 size 12{"75" times "10" rSup { size 8{"16"} } } {}
Rubber (hard) 10 13 10 16 size 12{"10" rSup { size 8{"13"} } - "10" rSup { size 8{"16"} } } {}
Sulfur 10 15 size 12{"10" rSup { size 8{"15"} } } {}
Teflon >10 13 size 12{>"10" rSup { size 8{"13"} } } {}
Wood 10 8 10 11 size 12{"10" rSup { size 8{8} } - "10" rSup { size 8{"11"} } } {}

Questions & Answers

definition of mass of conversion
umezurike Reply
Force equals mass time acceleration. Weight is a force and it can replace force in the equation. The acceleration would be gravity, which is an acceleration. To change from weight to mass divide by gravity (9.8 m/s^2).
Marisa
how many subject is in physics
Adeshina Reply
the write question should be " How many Topics are in O- Level Physics, or other branches of physics.
effiom
how many topic are in physics
Praise
yh I need someone to explain something im tryna solve . I'll send the question if u down for it
Tamdy Reply
a ripple tank experiment a vibrating plane is used to generate wrinkles in the water .if the distance between two successive point is 3.5cm and the wave travel a distance of 31.5cm find the frequency of the vibration
Tamdy
the range of objects and phenomena studied in physics is
Bethel Reply
what is Linear motion
Hamza Reply
straight line motion is called linear motion
then what
Amera
linear motion is a motion in a line, be it in a straight line or in a non straight line. It is the rate of change of distance.
Saeedul
Hi
aliyu
your are wrong Saeedul
Richard
Linear motion is a one-dimensional motion along a straight line, and can therefore be described mathematically using only one spatial dimension
Jason
is a one-dimensional motion along a straight line, and can therefore be described mathematically using only one spatial dimensions. 
Praise
what is a classical electrodynamics?
Marga
what is dynamics
Marga
dynamic is the force that stimulates change or progress within the system or process
Oze
what is the formula to calculate wavelength of the incident light
David Reply
if a spring is is stiffness of 950nm-1 what work will be done in extending the spring by 60mmp
Hassan Reply
State the forms of energy
Samzy Reply
machanical
Ridwan
Word : Mechanical wave Definition : The waves, which need a material medium for their propagation, e.g., Sound waves. \n\nOther Definition: The waves, which need a material medium for their propagation, are called mechanical waves. Mechanical waves are also called elastic waves. Sound waves, water waves are examples of mechanical waves.t Definition: wave consisting of periodic motion of matter; e.g. sound wave or water wave as opposed to electromagnetic wave.h
Clement Reply
correct
Akinpelu
what is mechanical wave
Akinpelu Reply
a wave which require material medium for its propagation
syed
The S.I unit for power is what?
Samuel Reply
watt
Okoli
Am I correct
Okoli
it can be in kilowatt, megawatt and so
Femi
yes
Femi
correct
Jaheim
kW
Akinpelu
OK that's right
Samuel
SI.unit of power is.watt=j/c.but kw.and Mw are bigger.umots
syed
What is physics
aish Reply
study of matter and its nature
Akinpelu
The word physics comes from a Greek word Physicos which means Nature.The Knowledge of Nature. It is branch of science which deals with the matter and energy and interaction between them.
Uniform
why in circular motion, a tangential acceleration can change the magnitude of the velocity but not its direction
Syafiqah Reply
reasonable
Femi
because it is balanced by the inward acceleration otherwise known as centripetal acceleration
MUSTAPHA
What is a wave
Mutuma Reply
Tramsmission of energy through a media
Mateo
is the disturbance that carry materials as propagation from one medium to another
Akinpelu
mistakes thanks
Akinpelu
find the triple product of (A*B).C given that A =i + 4j, B=2i - 3j and C = i + k
Favour Reply
Practice Key Terms 2

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask