# 20.3 Resistance and resistivity

 Page 1 / 6
• Explain the concept of resistivity.
• Use resistivity to calculate the resistance of specified configurations of material.
• Use the thermal coefficient of resistivity to calculate the change of resistance with temperature.

## Material and shape dependence of resistance

The resistance of an object depends on its shape and the material of which it is composed. The cylindrical resistor in [link] is easy to analyze, and, by so doing, we can gain insight into the resistance of more complicated shapes. As you might expect, the cylinder’s electric resistance $R$ is directly proportional to its length $L$ , similar to the resistance of a pipe to fluid flow. The longer the cylinder, the more collisions charges will make with its atoms. The greater the diameter of the cylinder, the more current it can carry (again similar to the flow of fluid through a pipe). In fact, $R$ is inversely proportional to the cylinder’s cross-sectional area $A$ .

For a given shape, the resistance depends on the material of which the object is composed. Different materials offer different resistance to the flow of charge. We define the resistivity     $\rho$ of a substance so that the resistance $R$ of an object is directly proportional to $\rho$ . Resistivity $\rho$ is an intrinsic property of a material, independent of its shape or size. The resistance $R$ of a uniform cylinder of length $L$ , of cross-sectional area $A$ , and made of a material with resistivity $\rho$ , is

$R=\frac{\mathrm{\rho L}}{A}\text{.}$

[link] gives representative values of $\rho$ . The materials listed in the table are separated into categories of conductors, semiconductors, and insulators, based on broad groupings of resistivities. Conductors have the smallest resistivities, and insulators have the largest; semiconductors have intermediate resistivities. Conductors have varying but large free charge densities, whereas most charges in insulators are bound to atoms and are not free to move. Semiconductors are intermediate, having far fewer free charges than conductors, but having properties that make the number of free charges depend strongly on the type and amount of impurities in the semiconductor. These unique properties of semiconductors are put to use in modern electronics, as will be explored in later chapters.

Resistivities $\rho$ Of various materials at $\text{20º}\text{C}$
Material Resistivity $\rho$ ( $\Omega \cdot \text{m}$ )
Conductors
Silver $1\text{.}\text{59}×{\text{10}}^{-8}$
Copper $1\text{.}\text{72}×{\text{10}}^{-8}$
Gold $2\text{.}\text{44}×{\text{10}}^{-8}$
Aluminum $2\text{.}\text{65}×{\text{10}}^{-8}$
Tungsten $5\text{.}6×{\text{10}}^{-8}$
Iron $9\text{.}\text{71}×{\text{10}}^{-8}$
Platinum $\text{10}\text{.}6×{\text{10}}^{-8}$
Steel $\text{20}×{\text{10}}^{-8}$
Lead $\text{22}×{\text{10}}^{-8}$
Manganin (Cu, Mn, Ni alloy) $\text{44}×{\text{10}}^{-8}$
Constantan (Cu, Ni alloy) $\text{49}×{\text{10}}^{-8}$
Mercury $\text{96}×{\text{10}}^{-8}$
Nichrome (Ni, Fe, Cr alloy) $\text{100}×{\text{10}}^{-8}$
Semiconductors Values depend strongly on amounts and types of impurities
Carbon (pure) $\text{3.5}×{\text{10}}^{5}$
Carbon $\left(3.5-\text{60}\right)×{\text{10}}^{5}$
Germanium (pure) $\text{600}×{\text{10}}^{-3}$
Germanium $\left(1-\text{600}\right)×{\text{10}}^{-3}$
Silicon (pure) $\text{2300}$
Silicon $\text{0.1–2300}$
Insulators
Amber $5×{\text{10}}^{\text{14}}$
Glass ${\text{10}}^{9}-{\text{10}}^{\text{14}}$
Lucite ${\text{>10}}^{\text{13}}$
Mica ${\text{10}}^{\text{11}}-{\text{10}}^{\text{15}}$
Quartz (fused) $\text{75}×{\text{10}}^{\text{16}}$
Rubber (hard) ${\text{10}}^{\text{13}}-{\text{10}}^{\text{16}}$
Sulfur ${\text{10}}^{\text{15}}$
Teflon ${\text{>10}}^{\text{13}}$
Wood ${\text{10}}^{8}-{\text{10}}^{\text{11}}$

Explain why magnetic damping might not be effective on an object made of several thin conducting layers separated by insulation? can someone please explain this i need it for my final exam
Hi
saeid
hi
Yimam
What is thê principle behind movement of thê taps control
what is atomic mass
this is the mass of an atom of an element in ratio with the mass of carbon-atom
Chukwuka
show me how to get the accuracies of the values of the resistors for the two circuits i.e for series and parallel sides
Explain why it is difficult to have an ideal machine in real life situations.
tell me
Promise
what's the s . i unit for couple?
Promise
its s.i unit is Nm
Covenant
Force×perpendicular distance N×m=Nm
Oluwakayode
İt iş diffucult to have idêal machine because of FRİCTİON definitely reduce thê efficiency
Oluwakayode
if the classica theory of specific heat is valid,what would be the thermal energy of one kmol of copper at the debye temperature (for copper is 340k)
can i get all formulas of physics
yes
haider
what affects fluid
pressure
Oluwakayode
Dimension for force MLT-2
what is the dimensions of Force?
how do you calculate the 5% uncertainty of 4cm?
4cm/100×5= 0.2cm
haider
how do you calculate the 5% absolute uncertainty of a 200g mass?
= 200g±(5%)10g
haider
use the 10g as the uncertainty?
melia
haider
topic of question?
haider
the relationship between the applied force and the deflection
melia
sorry wrong question i meant the 5% uncertainty of 4cm?
melia
its 0.2 cm or 2mm
haider
thank you
melia
Hello group...
Chioma
hi
haider
well hello there
sean
hi
Noks
hii
Chibueze
10g
Olokuntoye
0.2m
Olokuntoye
hi guys
thomas
the meaning of phrase in physics
is the meaning of phrase in physics
Chovwe
write an expression for a plane progressive wave moving from left to right along x axis and having amplitude 0.02m, frequency of 650Hz and speed if 680ms-¹
how does a model differ from a theory
To use the vocabulary of model theory and meta-logic, a theory is a set of sentences which can be derived from a formal model using some rule of inference (usually just modus ponens). So, for example, Number Theory is the set of sentences true about numbers. But the model is a structure together wit
Jesilda
with an iterpretation.
Jesilda