<< Chapter < Page Chapter >> Page >

Learning objectives

By the end of this section, you will be able to:

  • Explain the concept of resistivity.
  • Use resistivity to calculate the resistance of specified configurations of material.
  • Use the thermal coefficient of resistivity to calculate the change of resistance with temperature.

The information presented in this section supports the following AP® learning objectives and science practices:

  • 1.E.2.1 The student is able to choose and justify the selection of data needed to determine resistivity for a given material. (S.P. 4.1)
  • 4.E.4.2 The student is able to design a plan for the collection of data to determine the effect of changing the geometry and/or materials on the resistance or capacitance of a circuit element and relate results to the basic properties of resistors and capacitors. (S.P. 4.1, 4.2)
  • 4.E.4.3 The student is able to analyze data to determine the effect of changing the geometry and/or materials on the resistance or capacitance of a circuit element and relate results to the basic properties of resistors and capacitors. (S.P. 5.1)

Material and shape dependence of resistance

The resistance of an object depends on its shape and the material of which it is composed. The cylindrical resistor in [link] is easy to analyze, and, by so doing, we can gain insight into the resistance of more complicated shapes. As you might expect, the cylinder's electric resistance R size 12{R} {} is directly proportional to its length L size 12{L} {} , similar to the resistance of a pipe to fluid flow. The longer the cylinder, the more collisions charges will make with its atoms. The greater the diameter of the cylinder, the more current it can carry (again similar to the flow of fluid through a pipe). In fact, R size 12{R} {} is inversely proportional to the cylinder's cross-sectional area A size 12{A} {} .

A cylindrical conductor of length L and cross section A is shown. The resistivity of the cylindrical section is represented as rho. The resistance of this cross section R is equal to rho L divided by A. The section of length L of cylindrical conductor is shown equivalent to a resistor represented by symbol R.
A uniform cylinder of length L size 12{L} {} and cross-sectional area A size 12{A} {} . Its resistance to the flow of current is similar to the resistance posed by a pipe to fluid flow. The longer the cylinder, the greater its resistance. The larger its cross-sectional area A size 12{A} {} , the smaller its resistance.

For a given shape, the resistance depends on the material of which the object is composed. Different materials offer different resistance to the flow of charge. We define the resistivity     ρ size 12{ρ} {} of a substance so that the resistance R size 12{R} {} of an object is directly proportional to ρ size 12{ρ} {} . Resistivity ρ size 12{ρ} {} is an intrinsic property of a material, independent of its shape or size. The resistance R size 12{R} {} of a uniform cylinder of length L size 12{L} {} , of cross-sectional area A size 12{A} {} , and made of a material with resistivity ρ size 12{ρ} {} , is

R = ρL A . size 12{R = { {ρL} over {A} } "."} {}

[link] gives representative values of ρ size 12{ρ} {} . The materials listed in the table are separated into categories of conductors, semiconductors, and insulators, based on broad groupings of resistivities. Conductors have the smallest resistivities, and insulators have the largest; semiconductors have intermediate resistivities. Conductors have varying but large free charge densities, whereas most charges in insulators are bound to atoms and are not free to move. Semiconductors are intermediate, having far fewer free charges than conductors, but having properties that make the number of free charges depend strongly on the type and amount of impurities in the semiconductor. These unique properties of semiconductors are put to use in modern electronics, as will be explored in later chapters.

Questions & Answers

what is angular velocity
Obaapa Reply
Why does earth exert only a tiny downward pull?
Mya Reply
hello
Islam
Why is light bright?
Abraham Reply
what is radioactive element
Attah Reply
an 8.0 capacitor is connected by to the terminals of 60Hz whoes rms voltage is 150v. a.find the capacity reactance and rms to the circuit
Aisha Reply
thanks so much. i undersooth well
Valdes Reply
what is physics
Nwafor Reply
is the study of matter in relation to energy
Kintu
a submersible pump is dropped a borehole and hits the level of water at the bottom of the borehole 5 seconds later.determine the level of water in the borehole
Obrian Reply
what is power?
aron Reply
power P = Work done per second W/ t. It means the more power, the stronger machine
Sphere
e.g. heart Uses 2 W per beat.
Rohit
A spherica, concave shaving mirror has a radius of curvature of 32 cm .what is the magnification of a persons face. when it is 12cm to the left of the vertex of the mirror
Alona Reply
did you solve?
Shii
1.75cm
Ridwan
my name is Abu m.konnek I am a student of a electrical engineer and I want you to help me
Abu
the magnification k = f/(f-d) with focus f = R/2 =16 cm; d =12 cm k = 16/4 =4
Sphere
what do we call velocity
Kings
A weather vane is some sort of directional arrow parallel to the ground that may rotate freely in a horizontal plane. A typical weather vane has a large cross-sectional area perpendicular to the direction the arrow is pointing, like a “One Way” street sign. The purpose of the weather vane is to indicate the direction of the wind. As wind blows pa
Kavita Reply
hi
Godfred
what about the wind vane
Godfred
If a prism is fully imersed in water then the ray of light will normally dispersed or their is any difference?
Anurag Reply
the same behavior thru the prism out or in water bud abbot
Ju
If this will experimented with a hollow(vaccum) prism in water then what will be result ?
Anurag
What was the previous far point of a patient who had laser correction that reduced the power of her eye by 7.00 D, producing a normal distant vision power of 50.0 D for her?
Jaydie Reply
What is the far point of a person whose eyes have a relaxed power of 50.5 D?
Jaydie
What is the far point of a person whose eyes have a relaxed power of 50.5 D?
Jaydie
A young woman with normal distant vision has a 10.0% ability to accommodate (that is, increase) the power of her eyes. What is the closest object she can see clearly?
Jaydie
29/20 ? maybes
Ju
In what ways does physics affect the society both positively or negatively
Princewill Reply
how can I read physics...am finding it difficult to understand...pls help
rerry Reply
try to read several books on phy don't just rely one. some authors explain better than other.
Ju
And don't forget to check out YouTube videos on the subject. Videos offer a different visual way to learn easier.
Ju
hope that helps
Ju
Practice Key Terms 2

Get the best College physics for ap... course in your pocket!





Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask