<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the concept of electric charge
  • Explain qualitatively the force electric charge creates

You are certainly familiar with electronic devices that you activate with the click of a switch, from computers to cell phones to television. And you have certainly seen electricity in a flash of lightning during a heavy thunderstorm. But you have also most likely experienced electrical effects in other ways, maybe without realizing that an electric force was involved. Let’s take a look at some of these activities and see what we can learn from them about electric charges and forces.


You have probably experienced the phenomenon of static electricity    : When you first take clothes out of a dryer, many (not all) of them tend to stick together; for some fabrics, they can be very difficult to separate. Another example occurs if you take a woolen sweater off quickly—you can feel (and hear) the static electricity pulling on your clothes, and perhaps even your hair. If you comb your hair on a dry day and then put the comb close to a thin stream of water coming out of a faucet, you will find that the water stream bends toward (is attracted to) the comb ( [link] ).

A photograph of a stream of water bending sideways as it is attracted to a comb.
An electrically charged comb attracts a stream of water from a distance. Note that the water is not touching the comb. (credit: Jane Whitney)

Suppose you bring the comb close to some small strips of paper; the strips of paper are attracted to the comb and even cling to it ( [link] ). In the kitchen, quickly pull a length of plastic cling wrap off the roll; it will tend to cling to most any nonmetallic material (such as plastic, glass, or food). If you rub a balloon on a wall for a few seconds, it will stick to the wall. Probably the most annoying effect of static electricity is getting shocked by a doorknob (or a friend) after shuffling your feet on some types of carpeting.

A photograph of thin strips of paper stuck to a plastic comb.
After being used to comb hair, this comb attracts small strips of paper from a distance, without physical contact. Investigation of this behavior helped lead to the concept of the electric force.

Many of these phenomena have been known for centuries. The ancient Greek philosopher Thales of Miletus (624–546 BCE) recorded that when amber (a hard, translucent, fossilized resin from extinct trees) was vigorously rubbed with a piece of fur, a force was created that caused the fur and the amber to be attracted to each other ( [link] ). Additionally, he found that the rubbed amber would not only attract the fur, and the fur attract the amber, but they both could affect other (nonmetallic) objects, even if not in contact with those objects ( [link] ).

A photograph of a piece of gold-colored amber from Malaysia that has been rubbed and polished to a smooth, rounded shape.
Borneo amber is mined in Sabah, Malaysia, from shale-sandstone-mudstone veins. When a piece of amber is rubbed with a piece of fur, the amber gains more electrons, giving it a net negative charge. At the same time, the fur, having lost electrons, becomes positively charged. (credit: “Sebakoamber”/Wikimedia Commons)
Figure a shows a piece of amber and a piece of cloth. The amber has two negative charges and two positive charges, while the cloth has three of each. In figure B, two arrows are shown going through the amber, and another two arrows coming out of the amber. In figure C, the amber now has two positive charges and four negative charges, while the cloth has three positive charges and only one remaining negative charge.
When materials are rubbed together, charges can be separated, particularly if one material has a greater affinity for electrons than another. (a) Both the amber and cloth are originally neutral, with equal positive and negative charges. Only a tiny fraction of the charges are involved, and only a few of them are shown here. (b) When rubbed together, some negative charge is transferred to the amber, leaving the cloth with a net positive charge. (c) When separated, the amber and cloth now have net charges, but the absolute value of the net positive and negative charges will be equal.

Questions & Answers

What is differential form of Gauss's law?
Rohit Reply
help me out on this question the permittivity of diamond is 1.46*10^-10.( a)what is the dielectric of diamond (b) what its susceptibility
a body is projected vertically upward of 30kmp/h how long will it take to reach a point 0.5km bellow e point of projection
Abu Reply
i have to say. who cares. lol. why know that t all
is this just a chat app about the openstax book?
Lord Reply
kya ye b.sc ka hai agar haa to konsa part
MPL Reply
what is charge quantization
Mayowa Reply
it means that the total charge of a body will always be the integral multiples of basic unit charge ( e ) q = ne n : no of electrons or protons e : basic unit charge 1e = 1.602×10^-19
is the time quantized ? how ?
What do you meanby the statement,"Is the time quantized"
Can you give an explanation.
there are some comment on the time -quantized..
time is integer of the planck time, discrete..
planck time is travel in planck lenght of light..
it's says that charges does not occur in continuous form rather they are integral multiple of the elementary charge of an electron.
it is just like bohr's theory. Which was angular momentum of electron is intral multiple of h/2π
determine absolute zero
The properties of a system during a reversible constant pressure non-flow process at P= 1.6bar, changes from constant volume of 0.3m³/kg at 20°C to a volume of 0.55m³/kg at 260°C. its constant pressure process is 3.205KJ/kg°C Determine: 1. Heat added, Work done, Change in Internal Energy and Change in Enthalpy
Opeyemi Reply
U can easily calculate work done by 2.303log(v2/v1)
Amount of heat added through q=ncv^delta t
Change in internal energy through q=Q-w
please how do dey get 5/9 in the conversion of Celsius and Fahrenheit
Gwam Reply
what is copper loss
timileyin Reply
this is the energy dissipated(usually in the form of heat energy) in conductors such as wires and coils due to the flow of current against the resistance of the material used in winding the coil.
it is the work done in moving a charge to a point from infinity against electric field
Ashok Reply
what is the weight of the earth in space
peterpaul Reply
As w=mg where m is mass and g is gravitational force... Now if we consider the earth is in gravitational pull of sun we have to use the value of "g" of sun, so we can find the weight of eaeth in sun with reference to sun...
g is not gravitacional forcé, is acceleration of gravity of earth and is assumed constante. the "sun g" can not be constant and you should use Newton gravity forcé. by the way its not the "weight" the physical quantity that matters, is the mass
Yeah got it... Earth and moon have specific value of g... But in case of sun ☀ it is just a huge sphere of gas...
Thats why it can't have a constant value of g ....
not true. you must know Newton gravity Law . even a cloud of gas it has mass thats al matters. and the distsnce from the center of mass of the cloud and the center of the mass of the earth
please why is the first law of thermodynamics greater than the second
Ifeoma Reply
every law is important, but first law is conservation of energy, this state is the basic in physics, in this case first law is more important than other laws..
First Law describes o energy is changed from one form to another but not destroyed, but that second Law talk about entropy of a system increasing gradually
first law describes not destroyer energy to changed the form, but second law describes the fluid drection that is entropy. in this case first law is more basic accorging to me...
define electric image.obtain expression for electric intensity at any point on earthed conducting infinite plane due to a point charge Q placed at a distance D from it.
Mateshwar Reply
explain the lack of symmetry in the field of the parallel capacitor
Phoebe Reply
pls. explain the lack of symmetry in the field of the parallel capacitor

Get the best University physics vol... course in your pocket!

Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?