<< Chapter < Page Chapter >> Page >
W 2 = k q 1 q 2 r 12 = ( 9.0 × 10 9 N · m 2 C 2 ) ( 2.0 × 10 −6 C ) ( 3.0 × 10 −6 C ) 1.0 × 10 −2 m = 5.4 J .
The figure shows a square with side length 1.0cm and two charges (2.0µC and 3.0µC) on adjacent corners.
Step 2. Work W 2 to bring the + 3.0 - μ C charge from infinity.

Step 3. While keeping the charges of + 2.0 μ C and + 3.0 μ C fixed in their places, bring in the + 4.0 - μ C charge to ( x , y , z ) = ( 1.0 cm , 1.0 cm , 0 ) ( [link] ). The work done in this step is

W 3 = k q 1 q 3 r 13 + k q 2 q 3 r 23 = ( 9.0 × 10 9 N · m 2 C 2 ) [ ( 2.0 × 10 −6 C ) ( 4.0 × 10 −6 C ) 2 × 10 −2 m + ( 3.0 × 10 −6 C ) ( 4.0 × 10 −6 C ) 1.0 × 10 −2 m ] = 15.9 J .
The figure shows a square with side length 1.0cm and three charges (2.0µC, 3.0µC and 4.0µC) on three corners.
Step 3. The work W 3 to bring the + 4.0 - μ C charge from infinity.

Step 4. Finally, while keeping the first three charges in their places, bring the + 5.0 - μ C charge to ( x , y , z ) = ( 0 , 1.0 cm , 0 ) ( [link] ). The work done here is

W 4 = k q 4 [ q 1 r 14 + q 2 r 24 + q 3 r 34 ] , = ( 9.0 × 10 9 N · m 2 C 2 ) ( 5.0 × 10 −6 C ) [ ( 2.0 × 10 −6 C ) 1.0 × 10 −2 m + ( 3.0 × 10 −6 C ) 2 × 10 −2 m + ( 4.0 × 10 −6 C ) 1.0 × 10 −2 m ] = 36.5 J .
The figure shows a square with side length 1.0cm and four charges (2.0µC, 3.0µC, 4.0µC and 5.0µC) located at four corners.
Step 4. The work W 4 to bring the + 5.0 - μ C charge from infinity.

Hence, the total work done by the applied force in assembling the four charges is equal to the sum of the work in bringing each charge from infinity to its final position:

W T = W 1 + W 2 + W 3 + W 4 = 0 + 5.4 J + 15.9 J + 36.5 J = 57.8 J .

Significance

The work on each charge depends only on its pairwise interactions with the other charges. No more complicated interactions need to be considered; the work on the third charge only depends on its interaction with the first and second charges, the interaction between the first and second charge does not affect the third.

Check Your Understanding Is the electrical potential energy of two point charges positive or negative if the charges are of the same sign? Opposite signs? How does this relate to the work necessary to bring the charges into proximity from infinity?

positive, negative, and these quantities are the same as the work you would need to do to bring the charges in from infinity

Got questions? Get instant answers now!

Note that the electrical potential energy is positive if the two charges are of the same type, either positive or negative, and negative if the two charges are of opposite types. This makes sense if you think of the change in the potential energy Δ U as you bring the two charges closer or move them farther apart. Depending on the relative types of charges, you may have to work on the system or the system would do work on you, that is, your work is either positive or negative. If you have to do positive work on the system (actually push the charges closer), then the energy of the system should increase. If you bring two positive charges or two negative charges closer, you have to do positive work on the system, which raises their potential energy. Since potential energy is proportional to 1/ r , the potential energy goes up when r goes down between two positive or two negative charges.

On the other hand, if you bring a positive and a negative charge nearer, you have to do negative work on the system (the charges are pulling you), which means that you take energy away from the system. This reduces the potential energy. Since potential energy is negative in the case of a positive and a negative charge pair, the increase in 1/ r makes the potential energy more negative, which is the same as a reduction in potential energy.

The result from [link] may be extended to systems with any arbitrary number of charges. In this case, it is most convenient to write the formula as

W 12 N = k 2 i N j N q i q j r i j for i j .

The factor of 1/2 accounts for adding each pair of charges twice.

Summary

  • The work done to move a charge from point A to B in an electric field is path independent, and the work around a closed path is zero. Therefore, the electric field and electric force are conservative.
  • We can define an electric potential energy, which between point charges is U ( r ) = k q Q r , with the zero reference taken to be at infinity.
  • The superposition principle holds for electric potential energy; the potential energy of a system of multiple charges is the sum of the potential energies of the individual pairs.

Conceptual questions

Would electric potential energy be meaningful if the electric field were not conservative?

No. We can only define potential energies for conservative fields.

Got questions? Get instant answers now!

Why do we need to be careful about work done on the system versus work done by the system in calculations?

Got questions? Get instant answers now!

Does the order in which we assemble a system of point charges affect the total work done?

No, though certain orderings may be simpler to compute.

Got questions? Get instant answers now!

Problems

Consider a charge Q 1 ( + 5.0 μ C ) fixed at a site with another charge Q 2 (charge + 3.0 μ C , mass 6.0 μ g ) moving in the neighboring space. (a) Evaluate the potential energy of Q 2 when it is 4.0 cm from Q 1 . (b) If Q 2 starts from rest from a point 4.0 cm from Q 1 , what will be its speed when it is 8.0 cm from Q 1 ? ( Note: Q 1 is held fixed in its place.)

a. U = 3.4 J;
b. 1 2 m v 2 = k Q 1 Q 2 ( 1 r i 1 r f ) v = 750 m/s

Got questions? Get instant answers now!

Two charges Q 1 ( + 2.00 μ C ) and Q 2 ( + 2.00 μ C ) are placed symmetrically along the x -axis at x = ± 3.00 cm . Consider a charge Q 3 of charge + 4.00 μ C and mass 10.0 mg moving along the y -axis. If Q 3 starts from rest at y = 2.00 cm, what is its speed when it reaches y = 4.00 cm?

Got questions? Get instant answers now!

To form a hydrogen atom, a proton is fixed at a point and an electron is brought from far away to a distance of 0.529 × 10 −10 m, the average distance between proton and electron in a hydrogen atom. How much work is done?

U = 4.36 × 10 −18 J

Got questions? Get instant answers now!

(a) What is the average power output of a heart defibrillator that dissipates 400 J of energy in 10.0 ms? (b) Considering the high-power output, why doesn’t the defibrillator produce serious burns?

Got questions? Get instant answers now!

Questions & Answers

it is the relatively stable flow of income
Chidubem Reply
what is circular flow of income
Divine Reply
branches of macroeconomics
SHEDRACK Reply
what is Flexible exchang rate?
poudel Reply
is gdp a reliable measurement of wealth
Atega Reply
introduction to econometrics
Husseini Reply
Hi
mostafa
hi
LEMLEM
hello
Sammol
hi
Mahesh
bi
Ruqayat
hi
Ruqayat
Hi fellas
Nyawa
hey
Sammol
hi
God
hello
Jahara
Good morning
Jorge
hi
abubakar
hi
Nmesoma
hi
Mahesh
Hi
Tom
Why is unemployment rate never zero at full employment?
Priyanka Reply
bcoz of existence of frictional unemployment in our economy.
Umashankar
what is flexible exchang rate?
poudel
due to existence of the pple with disabilities
Abdulraufu
the demand of a good rises, causing the demand for another good to fall
Rushawn Reply
is it possible to leave every good at the same level
Joseph
I don't think so. because check it, if the demand for chicken increases, people will no longer consume fish like they used to causing a fall in the demand for fish
Anuolu
is not really possible to let the value of a goods to be same at the same time.....
Salome
Suppose the inflation rate is 6%, does it mean that all the goods you purchase will cost 6% more than previous year? Provide with reasoning.
Geetha Reply
Not necessarily. To measure the inflation rate economists normally use an averaged price index of a basket of certain goods. So if you purchase goods included in the basket, you will notice that you pay 6% more, otherwise not necessarily.
Waeth
discus major problems of macroeconomics
Alii Reply
what is the problem of macroeconomics
Yoal
Economic growth Stable prices and low unemployment
Ephraim
explain inflationcause and itis degre
Miresa Reply
what is inflation
Getu
increase in general price levels
WEETO
Good day How do I calculate this question: C= 100+5yd G= 2000 T= 2000 I(planned)=200. Suppose the actual output is 3000. What is the level of planned expenditures at this level of output?
Chisomo Reply
how to calculate actual output?
Chisomo
how to calculate the equilibrium income
Beshir
Criteria for determining money supply
Thapase Reply
who we can define macroeconomics in one line
Muhammad
Aggregate demand
Mohammed
C=k100 +9y and i=k50.calculate the equilibrium level of output
Mercy Reply
Hi
Isiaka
Hi
Geli
hy
Man
👋
Bahunda
hy how are you?
Man
ys
Amisha
how are you guys
Sekou
f9 guys
Amisha
how are you guys
Sekou
ys am also fine
Amisha
fine and you guys
Geli
from Nepal
Amisha
nawalparasi district from belatari
Amisha
nd u
Amisha
I am Camara from Guinea west Africa... happy to meet you guys here
Sekou
ma management ho
Amisha
ahile becheclor ho
Amisha
hjr ktm bta ho ani k kaam grnu hunxa tw
Amisha
belatari
Amisha
1st year ho
Amisha
nd u
Amisha
ahh
Amisha
kaha biratnagar
Amisha
ys
Amisha
kina k vo
Amisha
money as unit of account means what?
Kalombe
A unit of account is something that can be used to value goods and services and make calculations
Jim
all of you please speak in English I can't understand you're language
Muhammad
I want to know how can we define macroeconomics in one line
Muhammad
it must be .9 or 0.9 no Mpc is greater than 1 Y=100+.9Y+50 Y-.9Y=150 0.1Y/0.1=150/0.1 Y=1500
Kalombe
Mercy is it clear?😋
Kalombe
hi can someone help me on this question If a negative shocks shifts the IS curve to the left, what type of policy do you suggest so as to stabilize the level of output? discuss your answer using appropriate graph.
Galge Reply
if interest rate is increased this will will reduce the level of income shifting the curve to the left ◀️
Kalombe
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?

Ask