# 4.3 Refrigerators and heat pumps

 Page 1 / 4
By the end of this section, you will be able to:
• Describe a refrigerator and a heat pump and list their differences
• Calculate the performance coefficients of simple refrigerators and heat pumps

The cycles we used to describe the engine in the preceding section are all reversible, so each sequence of steps can just as easily be performed in the opposite direction. In this case, the engine is known as a refrigerator or a heat pump, depending on what is the focus: the heat removed from the cold reservoir or the heat dumped to the hot reservoir. Either a refrigerator or a heat pump is an engine running in reverse. For a refrigerator    , the focus is on removing heat from a specific area. For a heat pump    , the focus is on dumping heat to a specific area.

We first consider a refrigerator ( [link] ). The purpose of this engine is to remove heat from the cold reservoir, which is the space inside the refrigerator for an actual household refrigerator or the space inside a building for an air-conditioning unit.

A refrigerator (or heat pump) absorbs heat ${Q}_{\text{c}}$ from the cold reservoir at Kelvin temperature ${T}_{\text{c}}$ and discards heat ${Q}_{\text{h}}$ to the hot reservoir at Kelvin temperature ${T}_{\text{h}},$ while work W is done on the engine’s working substance, as shown by the arrow pointing toward the system in the figure. A household refrigerator removes heat from the food within it while exhausting heat to the surrounding air. The required work, for which we pay in our electricity bill, is performed by the motor that moves a coolant through the coils. A schematic sketch of a household refrigerator is given in [link] .

The effectiveness or coefficient of performance     ${K}_{\text{R}}$ of a refrigerator is measured by the heat removed from the cold reservoir divided by the work done by the working substance cycle by cycle:

${K}_{\text{R}}=\frac{{Q}_{\text{c}}}{W}=\frac{{Q}_{\text{c}}}{{Q}_{\text{h}}-{Q}_{\text{c}}}.$

Note that we have used the condition of energy conservation, $W={Q}_{\text{h}}-{Q}_{\text{c}},$ in the final step of this expression.

The effectiveness or coefficient of performance ${K}_{\text{P}}$ of a heat pump is measured by the heat dumped to the hot reservoir divided by the work done to the engine on the working substance cycle by cycle:

${K}_{\text{P}}=\frac{{Q}_{\text{h}}}{W}=\frac{{Q}_{\text{h}}}{{Q}_{\text{h}}-{Q}_{\text{c}}}.$

Once again, we use the energy conservation condition $W={Q}_{\text{h}}-{Q}_{\text{c}}$ to obtain the final step of this expression.

## Summary

• A refrigerator or a heat pump is a heat engine run in reverse.
• The focus of a refrigerator is on removing heat from the cold reservoir with a coefficient of performance ${K}_{\text{R}}.$
• The focus of a heat pump is on dumping heat to the hot reservoir with a coefficient of performance ${K}_{\text{P}}.$

## Conceptual questions

If the refrigerator door is left open, what happens to the temperature of the kitchen?

The temperature increases since the heat output behind the refrigerator is greater than the cooling from the inside of the refrigerator.

Is it possible for the efficiency of a reversible engine to be greater than 1.0? Is it possible for the coefficient of performance of a reversible refrigerator to be less than 1.0?

## Problems

A refrigerator has a coefficient of performance of 3.0. (a) If it requires 200 J of work per cycle, how much heat per cycle does it remove the cold reservoir? (b) How much heat per cycle is discarded to the hot reservoir?

a. 600 J; b. 800 J

During one cycle, a refrigerator removes 500 J from a cold reservoir and rejects 800 J to its hot reservoir. (a) What is its coefficient of performance? (b) How much work per cycle does it require to operate?

If a refrigerator discards 80 J of heat per cycle and its coefficient of performance is 6.0, what are (a) the quantity off heat it removes per cycle from a cold reservoir and (b) the amount of work per cycle required for its operation?

a. 69 J; b. 11 J

A refrigerator has a coefficient of performance of 3.0. (a) If it requires 200 J of work per cycle, how much heat per cycle does it remove the cold reservoir? (b) How much heat per cycle is discarded to the hot reservoir?

#### Questions & Answers

Why does the lines of force not touch each other 🇲🇲
what is unit
Please canu get more questions on electric field and electric flux please
Gbemisola
is electric field directly proportional to the squared of a distance
No electric field is inversely proportional to the squared distance between the charges
Gbemisola
lets treat linear expansivity please
The bullet 2.00cm long is fired at 420/s and passes straight through a 10.0 cm thick board existing at 280 m/s.What is the average acceleration of the bullet through the board?
FAUSTINA
an unstretched spring is 12cm long .A load of 5N stretched it to 15cm .how long will it be under a load of 15N?
Morapeli
hi
Africa
hi
Benjamin
Benjamin how are u are u a freshman in the university
Africa
like 100 level
Africa
yes sir
Benjamin
l need a physics tutor
Benjamin
I think the best tutor is God and organic tutor in YouTube that guy is good
Africa
me too 100level
Africa
wow nice
Benjamin
from Nigeria and u
Africa
I am from Nigeria and u wow nice that something I use to always say
Africa
am from Ghana
Benjamin
ok
Africa
studying what
Africa
Compare the electric flux through the surface of a cube of side length a that has a charge q at its center to the flux through a spherical surface of radius a with a charge q at its center.
please I want to know how to solve increase in length
Ujah
Why a charged capacitor has potential difference but not emf
what is the dimension symbol of temperature?
what is the dimension symbol of temperature?
Keren
what's the meaning of enthalpy in terms of latent heat, internal energy, phase change
Enthalpy is the degree ofdisorderlinessof a substance
Gbemisola
how to convert Kelvin to centigrade
what is the s, p, d, f in this table
Sangeetha
s, p, d, f in this table
Sangeetha
what kind of table this
Vengata
Periodic table
Gbemisola
what are waves
In physics, mathematics, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities
Discuss how would orient a planar surface of area A in a uniform electric field of magnitude E0 to obtain (a) the maximum flux and (b) the minimum flux through the area.
I'm just doing the first 3 with this message. but thankyou for the time your obviously intending to support us with. viva la accumulation
Marcel
Find the net capacitance of the combination of series and parallel capacitors shown belo
what is ohm?
calculate ideal gas pressure of 0.300mol,v=2L T=40°c
what is principle of superposition