# 14.6 Rlc series circuits  (Page 3/4)

 Page 3 / 4

A rectangular toroid with inner radius ${R}_{1}=7.0\phantom{\rule{0.2em}{0ex}}\text{cm,}$ outer radius ${R}_{2}=9.0\phantom{\rule{0.2em}{0ex}}\text{cm}$ , height $h=3.0$ , and $N=3000$ turns is filled with an iron core of magnetic susceptibility $5.2\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{3}$ . (a) What is the self-inductance of the toroid? (b) If the current through the toroid is 2.0 A, what is the magnetic field at the center of the core? (c) For this same 2.0-A current, what is the effective surface current formed by the aligned atomic current loops in the iron core?

The switch S of the circuit shown below is closed at $t=0$ . Determine (a) the initial current through the battery and (b) the steady-state current through the battery.

a. 0 A; b. 2.4 A

In an oscillating RLC circuit, $R=7.0\phantom{\rule{0.2em}{0ex}}\text{Ω},L=10\phantom{\rule{0.2em}{0ex}}\text{mH},\phantom{\rule{0.2em}{0ex}}\text{and}\phantom{\rule{0.2em}{0ex}}C=3.0\phantom{\rule{0.2em}{0ex}}\mu \text{F}$ . Initially, the capacitor has a charge of $8.0\phantom{\rule{0.2em}{0ex}}\mu \text{C}$ and the current is zero. Calculate the charge on the capacitor (a) five cycles later and (b) 50 cycles later.

A 25.0-H inductor has 100 A of current turned off in 1.00 ms. (a) What voltage is induced to oppose this? (b) What is unreasonable about this result? (c) Which assumption or premise is responsible?

a. $2.50\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{6}\phantom{\rule{0.2em}{0ex}}\text{V}$ ; (b) The voltage is so extremely high that arcing would occur and the current would not be reduced so rapidly. (c) It is not reasonable to shut off such a large current in such a large inductor in such an extremely short time.

## Challenge problems

A coaxial cable has an inner conductor of radius a, and outer thin cylindrical shell of radius b. A current I flows in the inner conductor and returns in the outer conductor. The self-inductance of the structure will depend on how the current in the inner cylinder tends to be distributed. Investigate the following two extreme cases. (a) Let current in the inner conductor be distributed only on the surface and find the self-inductance. (b) Let current in the inner cylinder be distributed uniformly over its cross-section and find the self-inductance. Compare with your results in (a).

In a damped oscillating circuit the energy is dissipated in the resistor. The Q -factor is a measure of the persistence of the oscillator against the dissipative loss. (a) Prove that for a lightly damped circuit the energy, U , in the circuit decreases according to the following equation.

$\frac{dU}{dt}=-2\beta U,$ where $\beta =\frac{R}{2L}.$

(b) Using the definition of the Q -factor as energy divided by the loss over the next cycle, prove that Q -factor of a lightly damped oscillator as defined in this problem is 

$Q\equiv \frac{{U}_{\text{begin}}}{\text{Δ}{U}_{\text{one cycle}}}=\frac{1}{R}\sqrt{\frac{L}{C}}.$

( Hint: For (b), to obtain Q , divide E at the beginning of one cycle by the change $\text{Δ}E$ over the next cycle.)

proof

The switch in the circuit shown below is closed at $t=0\phantom{\rule{0.2em}{0ex}}\text{s}$ . Find currents through (a) ${R}_{1}$ , (b) ${R}_{2}$ , and (c) the battery as function of time.

A square loop of side 2 cm is placed 1 cm from a long wire carrying a current that varies with time at a constant rate of 3 A/s as shown below. (a) Use Ampère’s law and find the magnetic field as a function of time from the current in the wire. (b) Determine the magnetic flux through the loop. (c) If the loop has a resistance of $3\phantom{\rule{0.2em}{0ex}}\text{Ω}$ , how much induced current flows in the loop?

a. $\frac{dB}{dt}=6\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-6}\phantom{\rule{0.2em}{0ex}}\text{T/s;}$ b. $\text{Φ}=\frac{{\mu }_{0}aI}{2\pi }\phantom{\rule{0.2em}{0ex}}\text{ln}\phantom{\rule{0.2em}{0ex}}\left(\frac{a+b}{b}\right)$ ; c. 4.0 nA

A rectangular copper ring, of mass 100 g and resistance $0.2\phantom{\rule{0.2em}{0ex}}\text{Ω}$ , is in a region of uniform magnetic field that is perpendicular to the area enclosed by the ring and horizontal to Earth’s surface. The ring is let go from rest when it is at the edge of the nonzero magnetic field region (see below). (a) Find its speed when the ring just exits the region of uniform magnetic field. (b) If it was let go at $t=0$ , what is the time when it exits the region of magnetic field for the following values: $a=25\phantom{\rule{0.2em}{0ex}}\text{cm},\phantom{\rule{0.2em}{0ex}}b=50\phantom{\rule{0.2em}{0ex}}\text{cm},\phantom{\rule{0.2em}{0ex}}B=3\phantom{\rule{0.2em}{0ex}}\text{T},\phantom{\rule{0.2em}{0ex}}\text{and}$ $g=9.8\phantom{\rule{0.2em}{0ex}}{\text{m/s}}^{2}?$ Assume the magnetic field of the induced current is negligible compared to 3 T.

#### Questions & Answers

what are waves
KENNETH Reply
In physics, mathematics, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities
Abdikadir
Discuss how would orient a planar surface of area A in a uniform electric field of magnitude E0 to obtain (a) the maximum flux and (b) the minimum flux through the area.
KARAN Reply
I'm just doing the first 3 with this message. but thankyou for the time your obviously intending to support us with. viva la accumulation
Marcel
Find the net capacitance of the combination of series and parallel capacitors shown belo
jean Reply
what is ohm?
Sharafat Reply
calculate ideal gas pressure of 0.300mol,v=2L T=40°c
Viola Reply
what is principle of superposition
Jyoti Reply
what are questions that are likely to come out during exam
King Reply
what is electricity
Jyoti Reply
watt is electricity.
Adam
electricity ka full definition with formula
Jyoti
If a point charge is released from rest in a uniform electric field will it follow a field line? Will it do so if the electric field is not uniform?
Sadaqat Reply
Maxwell's stress tensor is
Ami Reply
Yes
doris
neither vector nor scalar
Anil
if 6.0×10^13 electrons are placed on a metal sphere of charge 9.0micro Coulombs, what is the net charge on the sphere
Rita Reply
18.51micro Coulombs
ASHOK
Is it possible to find the magnetic field of a circular loop at the centre by using ampere's law?
Rb Reply
Is it possible to find the magnetic field of a circular loop at it's centre?
Rb Reply
yes
Brother
The density of a gas of relative molecular mass 28 at a certain temperature is 0.90 K kgmcube.The root mean square speed of the gas molecules at that temperature is 602ms.Assuming that the rate of diffusion of a gas in inversely proportional to the square root of its density,calculate the density of
Gifty Reply
A hot liquid at 80degree Celsius is added to 600g of the same liquid originally at 10 degree Celsius. when the mixture reaches 30 degree Celsius, what will be the total mass of the liquid?
Gifty
Under which topic
doris
what is electrostatics
Yakub Reply
Study of charges which are at rest
himanshu

### Read also:

#### Get Jobilize Job Search Mobile App in your pocket Now!

Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?

 By Richley Crapo By Jams Kalo By Joanna Smithback By Yasser Ibrahim By Rebecca Butterfield By David Corey By OpenStax By John Gabrieli By Kevin Moquin By JavaChamp Team