<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Determine the angular frequency of oscillation for a resistor, inductor, capacitor ( R L C ) series circuit
  • Relate the R L C circuit to a damped spring oscillation

When the switch is closed in the RLC circuit    of [link] (a), the capacitor begins to discharge and electromagnetic energy is dissipated by the resistor at a rate i 2 R . With U given by [link] , we have

d U d t = q C d q d t + L i d i d t = i 2 R

where i and q are time-dependent functions. This reduces to

L d 2 q d t 2 + R d q d t + 1 C q = 0 .
Figure a is a circuit with a capacitor, an inductor and a resistor in series with each other. They are also in series with a switch, which is open. Figure b shows the graph of charge versus time. The charge is at maximum value, q0, at t=0. The curve is similar to a sine wave that reduces in amplitude till it becomes zero.
(a) An RLC circuit. Electromagnetic oscillations begin when the switch is closed. The capacitor is fully charged initially. (b) Damped oscillations of the capacitor charge are shown in this curve of charge versus time, or q versus t . The capacitor contains a charge q 0 before the switch is closed.

This equation is analogous to

m d 2 x d t 2 + b d x d t + k x = 0 ,

which is the equation of motion for a damped mass-spring system (you first encountered this equation in Oscillations ). As we saw in that chapter, it can be shown that the solution to this differential equation takes three forms, depending on whether the angular frequency of the undamped spring is greater than, equal to, or less than b /2 m . Therefore, the result can be underdamped ( k / m > b / 2 m ) , critically damped ( k / m = b / 2 m ) , or overdamped ( k / m < b / 2 m ) . By analogy, the solution q ( t ) to the RLC differential equation has the same feature. Here we look only at the case of under-damping. By replacing m by L , b by R , k by 1/ C , and x by q in [link] , and assuming 1 / L C > R / 2 L , we obtain

q ( t ) = q 0 e R t / 2 L cos ( ω t + ϕ )

where the angular frequency of the oscillations is given by

ω = 1 L C ( R 2 L ) 2

This underdamped solution is shown in [link] (b). Notice that the amplitude of the oscillations decreases as energy is dissipated in the resistor. [link] can be confirmed experimentally by measuring the voltage across the capacitor as a function of time. This voltage, multiplied by the capacitance of the capacitor, then gives q ( t ).

Try an interactive circuit construction kit that allows you to graph current and voltage as a function of time. You can add inductors and capacitors to work with any combination of R , L , and C circuits with both dc and ac sources.

Try out a circuit-based java applet website that has many problems with both dc and ac sources that will help you practice circuit problems.

Check Your Understanding In an RLC circuit, L = 5.0 mH , C = 6.0 μ F , and R = 200 Ω . (a) Is the circuit underdamped, critically damped, or overdamped? (b) If the circuit starts oscillating with a charge of 3.0 × 10 −3 C on the capacitor, how much energy has been dissipated in the resistor by the time the oscillations cease?

a. overdamped; b. 0.75 J

Got questions? Get instant answers now!

Summary

  • The underdamped solution for the capacitor charge in an RLC circuit is
    q ( t ) = q 0 e R t / 2 L cos ( ω t + ϕ ) .
  • The angular frequency given in the underdamped solution for the RLC circuit is
    ω = 1 L C ( R 2 L ) 2 .

Key equations

Mutual inductance by flux M = N 2 Φ 21 I 1 = N 1 Φ 12 I 2
Mutual inductance in circuits ε 1 = M d I 2 d t
Self-inductance in terms of magnetic flux N Φ m = L I
Self-inductance in terms of emf ε = L d I d t
Self-inductance of a solenoid L solenoid = μ 0 N 2 A l
Self-inductance of a toroid L toroid = μ 0 N 2 h 2 π ln R 2 R 1 .
Energy stored in an inductor U = 1 2 L I 2
Current as a function of time for a RL circuit I ( t ) = ε R ( 1 e t / τ L )
Time constant for a RL circuit τ L = L / R
Charge oscillation in LC circuits q ( t ) = q 0 cos ( ω t + ϕ )
Angular frequency in LC circuits ω = 1 L C
Current oscillations in LC circuits i ( t ) = ω q 0 sin ( ω t + ϕ )
Charge as a function of time in RLC circuit q ( t ) = q 0 e R t / 2 L cos ( ω t + ϕ )
Angular frequency in RLC circuit ω = 1 L C ( R 2 L ) 2

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?

Ask