<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Analyze circuits that have an inductor and resistor in series
  • Describe how current and voltage exponentially grow or decay based on the initial conditions

A circuit with resistance and self-inductance is known as an RL circuit. [link] (a) shows an RL circuit consisting of a resistor, an inductor, a constant source of emf, and switches S 1 and S 2 . When S 1 is closed, the circuit is equivalent to a single-loop circuit consisting of a resistor and an inductor connected across a source of emf ( [link] (b)). When S 1 is opened and S 2 is closed, the circuit becomes a single-loop circuit with only a resistor and an inductor ( [link] (c)).

Figure a shows a resistor R and an inductor L connected in series with two switches which are parallel to each other. Both switches are currently open. Closing switch S1 would connect R and L in series with a battery, whose positive terminal is towards L. Closing switch S2 would form a closed loop of R and L, without the battery. Figure b shows a closed circuit with R, L and the battery in series. The side of L towards the battery, is at positive potential. Current flows from the positive end of L, through it, to the negative end. Figure c shows R and L connected in series. The potential across L is reversed, but the current flows in the same direction as in figure b.
(a) An RL circuit with switches S 1 and S 2 . (b) The equivalent circuit with S 1 closed and S 2 open. (c) The equivalent circuit after S 1 is opened and S 2 is closed.

We first consider the RL circuit of [link] (b). Once S 1 is closed and S 2 is open, the source of emf produces a current in the circuit. If there were no self-inductance in the circuit, the current would rise immediately to a steady value of ε / R . However, from Faraday’s law, the increasing current produces an emf V L = L ( d I / d t ) across the inductor. In accordance with Lenz’s law, the induced emf counteracts the increase in the current and is directed as shown in the figure. As a result, I(t) starts at zero and increases asymptotically to its final value.

Applying Kirchhoff’s loop rule to this circuit, we obtain

ε L d I d t I R = 0 ,

which is a first-order differential equation for I(t) . Notice its similarity to the equation for a capacitor and resistor in series (See RC Circuits ). Similarly, the solution to [link] can be found by making substitutions in the equations relating the capacitor to the inductor. This gives

I ( t ) = ε R ( 1 e R t / L ) = ε R ( 1 e t / τ L ) ,

where

τ L = L / R

is the inductive time constant    of the circuit.

The current I(t) is plotted in [link] (a). It starts at zero, and as t , I(t) approaches ε / R asymptotically. The induced emf V L ( t ) is directly proportional to dI / dt , or the slope of the curve. Hence, while at its greatest immediately after the switches are thrown, the induced emf decreases to zero with time as the current approaches its final value of ε / R . The circuit then becomes equivalent to a resistor connected across a source of emf.

Figure a shows the graph of electric current I versus time t. Current increases with time in a curve which flattens out at epsilon I R. At t equal to tau subscript L, the value of I is 0.63 epsilon I R. Figure b shows the graph of magnitude of induced voltage, mod V subscript L, versus time t. Mod V subscript L starts at value epsilon and decreases with time till the curve reaches zero. At t equal to tau subscript L, the value of I is 0.37 epsilon.
Time variation of (a) the electric current and (b) the magnitude of the induced voltage across the coil in the circuit of [link] (b).

The energy stored in the magnetic field of an inductor is

U L = 1 2 L I 2 .

Thus, as the current approaches the maximum current ε / R , the stored energy in the inductor increases from zero and asymptotically approaches a maximum of L ( ε / R ) 2 / 2 .

The time constant τ L tells us how rapidly the current increases to its final value. At t = τ L , the current in the circuit is, from [link] ,

I ( τ L ) = ε R ( 1 e −1 ) = 0.63 ε R ,

which is 63 % of the final value ε / R . The smaller the inductive time constant τ L = L / R , the more rapidly the current approaches ε / R .

We can find the time dependence of the induced voltage across the inductor in this circuit by using V L ( t ) = L ( d I / d t ) and [link] :

V L ( t ) = L d I d t = ε e t / τ L .

The magnitude of this function is plotted in [link] (b). The greatest value of L ( d I / d t ) is ε ; it occurs when dI/dt is greatest, which is immediately after S 1 is closed and S 2 is opened. In the approach to steady state, dI/dt decreases to zero. As a result, the voltage across the inductor also vanishes as t .

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?

Ask