<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Explain how energy can be stored in a magnetic field
  • Derive the equation for energy stored in a coaxial cable given the magnetic energy density

The energy of a capacitor is stored in the electric field between its plates. Similarly, an inductor has the capability to store energy, but in its magnetic field. This energy can be found by integrating the magnetic energy density    ,

u m = B 2 2 μ 0

over the appropriate volume. To understand where this formula comes from, let’s consider the long, cylindrical solenoid of the previous section. Again using the infinite solenoid approximation, we can assume that the magnetic field is essentially constant and given by B = μ 0 n I everywhere inside the solenoid. Thus, the energy stored in a solenoid or the magnetic energy density times volume is equivalent to

U = u m ( V ) = ( μ 0 n I ) 2 2 μ 0 ( A l ) = 1 2 ( μ 0 n 2 A l ) I 2 .

With the substitution of [link] , this becomes

U = 1 2 L I 2 .

Although derived for a special case, this equation gives the energy stored in the magnetic field of any inductor. We can see this by considering an arbitrary inductor through which a changing current is passing. At any instant, the magnitude of the induced emf is ε = L d i / d t , so the power absorbed by the inductor is

P = ε i = L d i d t i .

The total energy stored in the magnetic field when the current increases from 0 to I in a time interval from 0 to t can be determined by integrating this expression:

U = 0 t P d t = 0 t L d i d t i d t = L 0 l i d i = 1 2 L I 2 .

Self-inductance of a coaxial cable

[link] shows two long, concentric cylindrical shells of radii R 1 and R 2 . As discussed in Capacitance on capacitance, this configuration is a simplified representation of a coaxial cable . The capacitance per unit length of the cable has already been calculated. Now (a) determine the magnetic energy stored per unit length of the coaxial cable and (b) use this result to find the self-inductance per unit length of the cable.

Figure a shows two concentrically arranged hollow cylinders. The radius of the inner one is R1 and that of the outer one is R2. Figure 2 shows a dotted circle with radius r in between the two cylinders. Figure c shows a cylinder of length and radius r in between the two cylinders. Its thickness is dr.
(a) A coaxial cable is represented here by two hollow, concentric cylindrical conductors along which electric current flows in opposite directions. (b) The magnetic field between the conductors can be found by applying Ampère’s law to the dashed path. (c) The cylindrical shell is used to find the magnetic energy stored in a length l of the cable.

Strategy

The magnetic field both inside and outside the coaxial cable is determined by Ampère’s law. Based on this magnetic field, we can use [link] to calculate the energy density of the magnetic field. The magnetic energy is calculated by an integral of the magnetic energy density times the differential volume over the cylindrical shell. After the integration is carried out, we have a closed-form solution for part (a). The self-inductance per unit length is determined based on this result and [link] .

Solution

  1. We determine the magnetic field between the conductors by applying Ampère’s law to the dashed circular path shown in [link] (b). Because of the cylindrical symmetry, B is constant along the path, and
    B · d l = B ( 2 π r ) = μ 0 I .

    This gives us
    B = μ 0 I 2 π r .

    In the region outside the cable, a similar application of Ampère’s law shows that B = 0 , since no net current crosses the area bounded by a circular path where r > R 2 . This argument also holds when r < R 1 ; that is, in the region within the inner cylinder. All the magnetic energy of the cable is therefore stored between the two conductors. Since the energy density of the magnetic field is
    u m = B 2 2 μ 0 = μ 0 I 2 8 π 2 r 2 ,

    the energy stored in a cylindrical shell of inner radius r , outer radius r + d r , and length l (see part (c) of the figure) is
    u m = B 2 2 μ 0 = μ 0 I 2 8 π 2 r 2 .

    Thus, the total energy of the magnetic field in a length l of the cable is
    U = R 1 R 2 d U = R 1 R 2 μ 0 I 2 8 π 2 r 2 ( 2 π r l ) d r = μ 0 I 2 l 4 π ln R 2 R 1 ,

    and the energy per unit length is ( μ 0 I 2 / 4 π ) ln ( R 2 / R 1 ) .
  2. From [link] ,
    U = 1 2 L I 2 ,

    where L is the self-inductance of a length l of the coaxial cable. Equating the previous two equations, we find that the self-inductance per unit length of the cable is
    L l = μ 0 2 π ln R 2 R 1 .

Significance

The inductance per unit length depends only on the inner and outer radii as seen in the result. To increase the inductance, we could either increase the outer radius ( R 2 ) or decrease the inner radius ( R 1 ) . In the limit as the two radii become equal, the inductance goes to zero. In this limit, there is no coaxial cable. Also, the magnetic energy per unit length from part (a) is proportional to the square of the current.

Check Your Understanding How much energy is stored in the inductor of [link] after the current reaches its maximum value?

0.50 J

Got questions? Get instant answers now!

Summary

  • The energy stored in an inductor U is
    U = 1 2 L I 2 .
  • The self-inductance per unit length of coaxial cable is
    L l = μ 0 2 π ln R 2 R 1 .

Conceptual questions

Show that L I 2 / 2 has units of energy.

Got questions? Get instant answers now!

Problems

At the instant a current of 0.20 A is flowing through a coil of wire, the energy stored in its magnetic field is 6.0 × 10 −3 J . What is the self-inductance of the coil?

Got questions? Get instant answers now!

Suppose that a rectangular toroid has 2000 windings and a self-inductance of 0.040 H. If h = 0.10 m , what is the current flowing through a rectangular toroid when the energy in its magnetic field is 2.0 × 10 −6 J ?

0.01 A

Got questions? Get instant answers now!

Solenoid A is tightly wound while solenoid B has windings that are evenly spaced with a gap equal to the diameter of the wire. The solenoids are otherwise identical. Determine the ratio of the energies stored per unit length of these solenoids when the same current flows through each.

Got questions? Get instant answers now!

A 10-H inductor carries a current of 20 A. How much ice at 0 ° C could be melted by the energy stored in the magnetic field of the inductor? ( Hint : Use the value L f = 334 J/g for ice.)

6.0 g

Got questions? Get instant answers now!

A coil with a self-inductance of 3.0 H and a resistance of 100 Ω carries a steady current of 2.0 A. (a) What is the energy stored in the magnetic field of the coil? (b) What is the energy per second dissipated in the resistance of the coil?

Got questions? Get instant answers now!

A current of 1.2 A is flowing in a coaxial cable whose outer radius is five times its inner radius. What is the magnetic field energy stored in a 3.0-m length of the cable?

U m = 7.0 × 10 −7 J

Got questions? Get instant answers now!

Questions & Answers

how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot
what is isotopes
Nangun Reply
nuclei having the same Z and different N s
AI-Robot
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?

Ask