10.2 Resistors in series and parallel

 Page 1 / 11
By the end of the section, you will be able to:
• Define the term equivalent resistance
• Calculate the equivalent resistance of resistors connected in series
• Calculate the equivalent resistance of resistors connected in parallel

In Current and Resistance , we described the term ‘resistance’ and explained the basic design of a resistor. Basically, a resistor limits the flow of charge in a circuit and is an ohmic device where $V=IR.$ Most circuits have more than one resistor. If several resistors are connected together and connected to a battery, the current supplied by the battery depends on the equivalent resistance    of the circuit.

The equivalent resistance of a combination of resistors depends on both their individual values and how they are connected. The simplest combinations of resistors are series and parallel connections ( [link] ). In a series circuit , the output current of the first resistor flows into the input of the second resistor; therefore, the current is the same in each resistor. In a parallel circuit , all of the resistor leads on one side of the resistors are connected together and all the leads on the other side are connected together. In the case of a parallel configuration, each resistor has the same potential drop across it, and the currents through each resistor may be different, depending on the resistor. The sum of the individual currents equals the current that flows into the parallel connections.

Resistors in series

Resistors are said to be in series whenever the current flows through the resistors sequentially. Consider [link] , which shows three resistors in series with an applied voltage equal to ${V}_{ab}.$ Since there is only one path for the charges to flow through, the current is the same through each resistor. The equivalent resistance of a set of resistors in a series connection is equal to the algebraic sum of the individual resistances.

In [link] , the current coming from the voltage source flows through each resistor, so the current through each resistor is the same. The current through the circuit depends on the voltage supplied by the voltage source and the resistance of the resistors. For each resistor, a potential drop occurs that is equal to the loss of electric potential energy as a current travels through each resistor. According to Ohm’s law, the potential drop V across a resistor when a current flows through it is calculated using the equation $V=IR,$ where I is the current in amps (A) and R is the resistance in ohms $\left(\text{Ω}\right).$ Since energy is conserved, and the voltage is equal to the potential energy per charge, the sum of the voltage applied to the circuit by the source and the potential drops across the individual resistors around a loop should be equal to zero:

What mass of steam of 100 degree celcius must be mixed with 150g of ice at 0 degree celcius, in a thermally insulated container, to produce liquid water at 50 degree celcius
sorry I dont know
Bamidele
thank you
Emmanuel
What is the pressure?
SHREESH
To convert 0°C ice to 0°c water. Q=M*s=150g*334J/g=50100 J.......... Now 0° water to 50° water... Q=M*s*dt=150g*4.186J/g*50= 31395 J....... Which adds upto 81495 J..... This is amount of heat the steam has to carry. 81495= M *s=M*2230J/g..therefore.....M=36.54g of steam
SHREESH
This is at 1 atm
SHREESH
If there is change in pressure u can refer to the steam table ....
SHREESH
instrument for measuring highest temperature of a body is?
Thermometer
Umar
how does beryllium decay occur
Photon?
Umar
state the first law of thermodynamics
Its state that "energy can neither be created nor destroyed but can be transformed from one form to another. "
Ayodamola
what about the other laws can anyone here help with it please
Sandy
The second law of thermodynamics states that the entropy of any isolated system always increases. The third law of thermodynamics states that the entropy of a system approaches a constant value as the temperature approaches absolute zero.
sahil
The first law is very simple to understand by its equation. The law states that "total energy in thermodynamic sytem is always constant" i.e d¶=du+dw where d¶=total heat du=internal energy dw=workdone... PLEASE REFER TO THE BOOKS FOR MORE UNDERSTANDING OF THE CONCEPT.
Elia
what is distance.?
what is physics?
Ali
Physics is a scientific phenomenon that deals with matter and its properties
Ayodamola
physics is the study of nature and science
John
Chater1to7
min
Physics is branch of science which deals with the study of matters in relation with energy.
Elia
What is differential form of Gauss's law?
help me out on this question the permittivity of diamond is 1.46*10^-10.( a)what is the dielectric of diamond (b) what its susceptibility
a body is projected vertically upward of 30kmp/h how long will it take to reach a point 0.5km bellow e point of projection
i have to say. who cares. lol. why know that t all
Jeff
is this just a chat app about the openstax book?
kya ye b.sc ka hai agar haa to konsa part
what is charge quantization
it means that the total charge of a body will always be the integral multiples of basic unit charge ( e ) q = ne n : no of electrons or protons e : basic unit charge 1e = 1.602×10^-19
Riya
is the time quantized ? how ?
Mehmet
What do you meanby the statement,"Is the time quantized"
Mayowa
Can you give an explanation.
Mayowa
there are some comment on the time -quantized..
Mehmet
time is integer of the planck time, discrete..
Mehmet
planck time is travel in planck lenght of light..
Mehmet
it's says that charges does not occur in continuous form rather they are integral multiple of the elementary charge of an electron.
Tamoghna
it is just like bohr's theory. Which was angular momentum of electron is intral multiple of h/2π
determine absolute zero
The properties of a system during a reversible constant pressure non-flow process at P= 1.6bar, changes from constant volume of 0.3m³/kg at 20°C to a volume of 0.55m³/kg at 260°C. its constant pressure process is 3.205KJ/kg°C Determine: 1. Heat added, Work done, Change in Internal Energy and Change in Enthalpy
U can easily calculate work done by 2.303log(v2/v1)
Abhishek
Amount of heat added through q=ncv^delta t
Abhishek
Change in internal energy through q=Q-w
Abhishek
please how do dey get 5/9 in the conversion of Celsius and Fahrenheit
what is copper loss
this is the energy dissipated(usually in the form of heat energy) in conductors such as wires and coils due to the flow of current against the resistance of the material used in winding the coil.
Henry