# 1.6 Mechanisms of heat transfer  (Page 16/27)

 Page 16 / 27

You leave a pastry in the refrigerator on a plate and ask your roommate to take it out before you get home so you can eat it at room temperature, the way you like it. Instead, your roommate plays video games for hours. When you return, you notice that the pastry is still cold, but the game console has become hot. Annoyed, and knowing that the pastry will not be good if it is microwaved, you warm up the pastry by unplugging the console and putting it in a clean trash bag (which acts as a perfect calorimeter) with the pastry on the plate. After a while, you find that the equilibrium temperature is a nice, warm $38.3\phantom{\rule{0.2em}{0ex}}\text{°}\text{C}$ . You know that the game console has a mass of 2.1 kg. Approximate it as having a uniform initial temperature of $45\phantom{\rule{0.2em}{0ex}}\text{°}\text{C}$ . The pastry has a mass of 0.16 kg and a specific heat of $3.0\phantom{\rule{0.2em}{0ex}}\text{k}\phantom{\rule{0.2em}{0ex}}\text{J/}\left(\text{kg}·\text{ºC}\right),$ and is at a uniform initial temperature of $4.0\phantom{\rule{0.2em}{0ex}}\text{°}\text{C}$ . The plate is at the same temperature and has a mass of 0.24 kg and a specific heat of $0.90\phantom{\rule{0.2em}{0ex}}\text{J/}\left(\text{kg}·\text{ºC}\right)$ . What is the specific heat of the console?

$1.7\phantom{\rule{0.2em}{0ex}}\text{kJ/}\left(\text{kg}·\text{ºC}\right)$

Two solid spheres, A and B , made of the same material, are at temperatures of $0\phantom{\rule{0.2em}{0ex}}\text{°}\text{C}$ and $100\phantom{\rule{0.2em}{0ex}}\text{°}\text{C}$ , respectively. The spheres are placed in thermal contact in an ideal calorimeter, and they reach an equilibrium temperature of $20\phantom{\rule{0.2em}{0ex}}\text{°}\text{C}$ . Which is the bigger sphere? What is the ratio of their diameters?

In some countries, liquid nitrogen is used on dairy trucks instead of mechanical refrigerators. A 3.00-hour delivery trip requires 200 L of liquid nitrogen, which has a density of $808\phantom{\rule{0.2em}{0ex}}{\text{kg/m}}^{3}.$ (a) Calculate the heat transfer necessary to evaporate this amount of liquid nitrogen and raise its temperature to $3.00\phantom{\rule{0.2em}{0ex}}\text{°}\text{C}$ . (Use ${c}_{\text{P}}$ and assume it is constant over the temperature range.) This value is the amount of cooling the liquid nitrogen supplies. (b) What is this heat transfer rate in kilowatt-hours? (c) Compare the amount of cooling obtained from melting an identical mass of $0\text{-}\text{°}\text{C}$ ice with that from evaporating the liquid nitrogen.

a. $1.57\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{4}\phantom{\rule{0.2em}{0ex}}\text{kcal}$ ; b. $18.3\phantom{\rule{0.2em}{0ex}}\text{kW}·\text{h}$ ; c. $1.29\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{4}\phantom{\rule{0.2em}{0ex}}\text{kcal}$

Some gun fanciers make their own bullets, which involves melting lead and casting it into lead slugs. How much heat transfer is needed to raise the temperature and melt 0.500 kg of lead, starting from $25.0\phantom{\rule{0.2em}{0ex}}\text{°}\text{C}$ ?

A 0.800-kg iron cylinder at a temperature of $1.00\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{3}\phantom{\rule{0.2em}{0ex}}\text{°}\text{C}$ is dropped into an insulated chest of 1.00 kg of ice at its melting point. What is the final temperature, and how much ice has melted?

$6.3\phantom{\rule{0.2em}{0ex}}\text{°}\text{C}$ . All of the ice melted.

Repeat the preceding problem with 2.00 kg of ice instead of 1.00 kg.

Repeat the preceding problem with 0.500 kg of ice, assuming that the ice is initially in a copper container of mass 1.50 kg in equilibrium with the ice.

$63.9\phantom{\rule{0.2em}{0ex}}\text{°}\text{C}$ , all the ice melted

A 30.0-g ice cube at its melting point is dropped into an aluminum calorimeter of mass 100.0 g in equilibrium at $24.0\phantom{\rule{0.2em}{0ex}}\text{°}\text{C}$ with 300.0 g of an unknown liquid. The final temperature is $4.0\phantom{\rule{0.2em}{0ex}}\text{°}\text{C}$ . What is the heat capacity of the liquid?

(a) Calculate the rate of heat conduction through a double-paned window that has a $1.50{\text{-m}}^{2}$ area and is made of two panes of 0.800-cm-thick glass separated by a 1.00-cm air gap. The inside surface temperature is $15.0\phantom{\rule{0.2em}{0ex}}\text{°}\text{C},$ while that on the outside is $-10.0\phantom{\rule{0.2em}{0ex}}\text{°}\text{C}.$ ( Hint: There are identical temperature drops across the two glass panes. First find these and then the temperature drop across the air gap. This problem ignores the increased heat transfer in the air gap due to convection.) (b) Calculate the rate of heat conduction through a 1.60-cm-thick window of the same area and with the same temperatures. Compare your answer with that for part (a).

a. 83 W; b. $1.97\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{3}\phantom{\rule{0.2em}{0ex}}\text{W}$ ; The single-pane window has a rate of heat conduction equal to 1969/83, or 24 times that of a double-pane window.

Why does the lines of force not touch each other 🇲🇲
what is unit
Please canu get more questions on electric field and electric flux please
Gbemisola
is electric field directly proportional to the squared of a distance
No electric field is inversely proportional to the squared distance between the charges
Gbemisola
The bullet 2.00cm long is fired at 420/s and passes straight through a 10.0 cm thick board existing at 280 m/s.What is the average acceleration of the bullet through the board?
FAUSTINA
an unstretched spring is 12cm long .A load of 5N stretched it to 15cm .how long will it be under a load of 15N?
Morapeli
hi
Africa
hi
Benjamin
Benjamin how are u are u a freshman in the university
Africa
like 100 level
Africa
yes sir
Benjamin
l need a physics tutor
Benjamin
I think the best tutor is God and organic tutor in YouTube that guy is good
Africa
me too 100level
Africa
wow nice
Benjamin
from Nigeria and u
Africa
I am from Nigeria and u wow nice that something I use to always say
Africa
am from Ghana
Benjamin
ok
Africa
studying what
Africa
Compare the electric flux through the surface of a cube of side length a that has a charge q at its center to the flux through a spherical surface of radius a with a charge q at its center.
please I want to know how to solve increase in length
Ujah
Why a charged capacitor has potential difference but not emf
what is the dimension symbol of temperature?
what is the dimension symbol of temperature?
Keren
what's the meaning of enthalpy in terms of latent heat, internal energy, phase change
Enthalpy is the degree ofdisorderlinessof a substance
Gbemisola
how to convert Kelvin to centigrade
what is the s, p, d, f in this table
Sangeetha
s, p, d, f in this table
Sangeetha
what kind of table this
Vengata
Periodic table
Gbemisola
what are waves
In physics, mathematics, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities
Discuss how would orient a planar surface of area A in a uniform electric field of magnitude E0 to obtain (a) the maximum flux and (b) the minimum flux through the area.
I'm just doing the first 3 with this message. but thankyou for the time your obviously intending to support us with. viva la accumulation
Marcel
Find the net capacitance of the combination of series and parallel capacitors shown belo
what is ohm?
calculate ideal gas pressure of 0.300mol,v=2L T=40°c
what is principle of superposition