<< Chapter < Page Chapter >> Page >

Electrochemistry and batteries

You will remember from chapter [link] that a galvanic cell (also known as a voltaic cell) is a type of electrochemical cell where a chemical reaction produces electrical energy. The electromotive force (emf) of a galvanic cell is the difference in voltage between the two half cells that make it up. Galvanic cells have a number of applications, but one of the most important is their use in batteries . You will know from your own experience that we use batteries in a number of ways, including cars, torches, sound systems and cellphones to name just a few.

How batteries work

A battery is a device in which chemical energy is directly converted to electrical energy . It consists of one or more voltaic cells, each of which is made up of two half cells that are connected in series by a conductive electrolyte. The voltaic cells are connected in series in a battery. Each cell has a positive electrode (cathode), and a negative electrode (anode). These do not touch each other but are immersed in a solid or liquid electrolyte.

Each half cell has a net electromotive force (emf) or voltage. The voltage of the battery is the difference between the voltages of the half-cells. This potential difference between the two half cells is what causes an electric current to flow.

Batteries are usually divided into two broad classes:

  • Primary batteries irreversibly transform chemical energy to electrical energy. Once the supply of reactants has been used up, the battery can't be used any more.
  • Secondary batteries can be recharged, in other words, their chemical reactions can be reversed if electrical energy is supplied to the cell. Through this process, the cell returns to its original state. Secondary batteries can't be recharged forever because there is a gradual loss of the active materials and electrolyte. Internal corrosion can also take place.

Battery capacity and energy

The capacity of a battery, in other words its ability to produce an electric charge, depends on a number of factors. These include:

  • Chemical reactions The chemical reactions that take place in each of a battery's half cells will affect the voltage across the cell, and therefore also its capacity. For example, nickel-cadmium (NiCd) cells measure about 1.2 V, and alkaline and carbon-zinc cells both measure about 1.5 V. However, in other cells such as Lithium cells, the changes in electrochemical potential are much higher because of the reactions of lithium compounds, and so lithium cells can produce as much as 3 volts or more. The concentration of the chemicals that are involved will also affect a battery's capacity. The higher the concentration of the chemicals, the greater the capacity of the battery.
  • Quantity of electrolyte and electrode material in cell The greater the amount of electrolyte in the cell, the greater its capacity. In other words, even if the chemistry in two cells is the same, a larger cell will have a greater capacity than a small one. Also, the greater the surface area of the electrodes, the greater will be the capacity of the cell.
  • Discharge conditions A unit called an Ampere hour (Ah) is used to describe how long a battery will last. An ampere hour (more commonly known as an amp hour ) is the amount of electric charge that is transferred by a current of one ampere for one hour. Battery manufacturers use a standard method to rate their batteries. So, for example, a 100 Ah battery will provide a current of 5 A for a period of 20 hours at room temperature. The capacity of the battery will depend on the rate at which it is discharged or used. If a 100 Ah battery is discharged at 50 A (instead of 5 A), the capacity will be lower than expected and the battery will run out before the expected 2 hours. The relationship between the current, discharge time and capacity of a battery is expressed by Peukert's law :
    C p = I k t
    In the equation, 'C p ' represents the battery's capacity (Ah), I is the discharge current (A), k is the Peukert constant and t is the time of discharge (hours).

Questions & Answers

what is phylogeny
Odigie Reply
evolutionary history and relationship of an organism or group of organisms
AI-Robot
ok
Deng
what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 12 physical science. OpenStax CNX. Aug 03, 2011 Download for free at http://cnx.org/content/col11244/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 12 physical science' conversation and receive update notifications?

Ask