<< Chapter < Page Chapter >> Page >

Atomic combinations

When you look at the matter, or physical substances, around you, you will realise that atoms seldom exist on their own. More often, the things around us are made up of different atoms that have been joined together. This is called chemical bonding . Chemical bonding is one of the most important processes in chemistry because it allows all sorts of different molecules and combinations of atoms to form, which then make up the objects in the complex world around us. There are, however, some atoms that do exist on their own, and which do not bond with others. The noble gases in Group 8 of the Periodic Table behave in this way. They include elements like neon (Ne), helium (He) and argon (Ar). The important question then is, why do some atoms bond but others do not?

Why do atoms bond?

As we begin this section, it's important to remember that what we will go on to discuss is a model of bonding, that is based on a particular model of the atom. You will remember from the discussion on atoms that a model is a representation of what is happening in reality. In the model of the atom that you are familiar with, the atom is made up of a central nucleus, surrounded by electrons that are arranged in fixed energy levels (sometimes called shells ). Within each energy level, electrons move in orbitals of different shapes. The electrons in the outermost energy level of an atom are called the valence electrons . This model of the atom is useful in trying to understand how different types of bonding take place between atoms.

You will remember from these earlier discussions of electrons and energy levels in the atom, that electrons always try to occupy the lowest possible energy level. In the same way, an atom also prefers to exist in the lowest possible energy state so that it is most stable . An atom is most stable when all its valence electron orbitals are full . In other words, the outer energy level of the atom contains the maximum number of electrons that it can. A stable atom is also an unreactive one, and is unlikely to bond with other atoms. This explains why the noble gases are unreactive and why they exist as atoms, rather than as molecules. Look for example at the electron configuration of neon (1s 2 2s 2 2p 6 ). Neon has eight valence electrons in its valence energy shell. This is the maximum that it can hold and so neon is very stable and unreactive, and will not form new bonds. Other atoms, whose valence energy levels are not full, are more likely to bond in order to become more stable. We are going to look a bit more closely at some of the energy changes that take place when atoms bond.

Energy and bonding

Let's start by imagining that there are two hydrogen atoms approaching one another. As they move closer together, there are three forces that act on the atoms at the same time. These forces are shown in [link] and are described below:

Forces acting on two approaching atoms: (1) repulsion between electrons, (2) attraction between protons and electrons and (3) repulsion between protons.
  1. repulsive force between the electrons of the atoms, since like charges repel
  2. attractive force between the nucleus of one atom and the electrons of another
  3. repulsive force between the two positively-charged nuclei

Now look at [link] to understand the energy changes that take place when the two atoms move towards each other.

Graph showing the change in energy that takes place as atoms move closer together

In the example of the two hydrogen atoms, where the resultant force between them is attraction, the energy of the system is zero when the atoms are far apart (point A), because there is no interaction between the atoms. When the atoms move closer together, attractive forces dominate and the atoms are pulled towards each other. As this happens, the potential energy of the system decreases because energy would now need to be supplied to the system in order to move the atoms apart. However, as the atoms continue to move closer together (i.e. left along the horizontal axis of the graph), repulsive forces start to dominate and this causes the potential energy of the system to rise again. At some point, the attractive and repulsive effects are balanced, and the energy of the system is at its minimum (point X). It is at this point, when the energy is at a minimum, that bonding takes place.

The distance marked 'P' is the bond length , i.e. the distance between the nuclei of the atoms when they bond. 'Q' represents the bond energy i.e. the amount of energy that must be added to the system to break the bonds that have formed. Bond strength means how strongly one atom attracts and is held to another. The strength of a bond is related to the bond length, the size of the bonded atoms and the number of bonds between the atoms. In general, the shorter the bond length, the stronger the bond between the atoms, and the smaller the atoms involved, the stronger the bond. The greater the number of bonds between the atoms, the greater the bond strength.

run demo

What happens when atoms bond?

A chemical bond is formed when atoms are held together by attractive forces. This attraction occurs when electrons are shared between atoms, or when electrons are exchanged between the atoms that are involved in the bond. The sharing or exchange of electrons takes place so that the outer energy levels of the atoms involved are filled and the atoms are more stable. If an electron is shared , it means that it will spend its time moving in the electron orbitals around both atoms. If an electron is exchanged it means that it is transferred from one atom to another, in other words one atom gains an electron while the other loses an electron.

Chemical bond

A chemical bond is the physical process that causes atoms and molecules to be attracted to each other, and held together in more stable chemical compounds.

The type of bond that is formed depends on the elements that are involved. In this section, we will be looking at three types of chemical bonding: covalent , ionic and metallic bonding .

You need to remember that it is the valence electrons that are involved in bonding and that atoms will try to fill their outer energy levels so that they are more stable.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 11 physical science. OpenStax CNX. Jul 29, 2011 Download for free at http://cnx.org/content/col11241/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 11 physical science' conversation and receive update notifications?

Ask