<< Chapter < Page Chapter >> Page >

Echolocation

Animals like dolphins and bats make use of sounds waves to find their way. Just like ships on the ocean, bats use sonar to navigate. Ultrasound waves that are sent out are reflected off the objects around the animal. Bats, or dolphins, then use the reflected sounds to form a “picture” of their surroundings. This is called echolocation.

A ship sends a signal to the bottom of the ocean to determine the depth of the ocean. The speed of sound in sea water is 1450 m . s - 1 If the signal is received 1,5 seconds later, how deep is the ocean at that point?

  1. s = 1450 m . s - 1 t = 1 , 5 s there and back t = 0 , 75 s one way d = ?
  2. Distance = speed × time d = s × t = 1450 m . s - 1 × 0 , 75 s = 1087 , 5 m
Got questions? Get instant answers now!

Summary

  1. Sound waves are longitudinal waves
  2. The frequency of a sound is an indication of how high or low the pitch of the sound is.
  3. The human ear can hear frequencies from 20 to 20 000 Hz. Infrasound waves have frequencies lower than 20 Hz. Ultrasound waves have frequencies higher than 20 000 Hz.
  4. The amplitude of a sound determines its loudness or volume.
  5. The tone is a measure of the quality of a sound wave.
  6. The speed of sound in air is around 340 m.s - 1 . It is dependent on the temperature, height above sea level and the phase of the medium through which it is travelling.
  7. Sound travels faster when the medium is hot.
  8. Sound travels faster in a solid than a liquid and faster in a liquid than in a gas.
  9. Sound travels faster at sea level where the air pressure is higher.
  10. The intensity of a sound is the energy transmitted over a certain area. Intensity is a measure of frequency.
  11. Ultrasound can be used to form pictures of things we cannot see, like unborn babies or tumors.
  12. Echolocation is used by animals such as dolphins and bats to “see” their surroundings by using ultrasound.
  13. Ships use sonar to determine how deep the ocean is or to locate shoals of fish.

Exercises

  1. Choose a word from column B that best describes the concept in column A.
    Column A Column B
    pitch of sound amplitude
    loudness of sound frequency
    quality of sound speed
    waveform
  2. A tuning fork, a violin string and a loudspeaker are producing sounds. This is because they are all in a state of:
    1. compression
    2. rarefaction
    3. rotation
    4. tension
    5. vibration
  3. What would a drummer do to make the sound of a drum give a note of lower pitch?
    1. hit the drum harder
    2. hit the drum less hard
    3. hit the drum near the edge
    4. loosen the drum skin
    5. tighten the drum skin
  4. What is the approximate range of audible frequencies for a healthy human?
    1. 0.2 Hz 200 Hz
    2. 2 Hz 2 000 Hz
    3. 20 Hz 20 000 Hz
    4. 200 Hz 200 000 Hz
    5. 2 000 Hz 2 000 000 Hz
  5. X and Y are different wave motions. In air, X travels much faster than Y but has a much shorter wavelength. Which types of wave motion could X and Y be?
    X Y
    A microwaves red light
    B radio infra red
    C red light sound
    D sound ultraviolet
    E ultraviolet radio
  6. Astronauts are in a spaceship orbiting the moon. They see an explosion on the surface of the moon. Why can they not hear the explosion?
    1. explosions do not occur in space
    2. sound cannot travel through a vacuum
    3. sound is reflected away from the spaceship
    4. sound travels too quickly in space to affect the ear drum
    5. the spaceship would be moving at a supersonic speed
  7. A man stands between two cliffs as shown in the diagram and claps his hands once.
    Assuming that the velocity of sound is 330 m.s - 1 , what will be the time interval between the two loudest echoes?
    1. 1 6 s
    2. 5 6 s
    3. 1 3 s
    4. 1 s
    5. 2 3 s
  8. A dolphin emits an ultrasonic wave with frequency of 0,15 MHz. The speed of the ultrasonic wave in water is 1 500 m.s - 1 . What is the wavelength of this wave in water?
    1. 0.1 mm
    2. 1 cm
    3. 10 cm
    4. 10 m
    5. 100 m
  9. The amplitude and frequency of a sound wave are both increased. How are the loudness and pitch of the sound affected?
    loudness pitch
    A increased raised
    B increased unchanged
    C increased lowered
    D decreased raised
    E decreased lowered
  10. A jet fighter travels slower than the speed of sound. Its speed is said to be:
    1. Mach 1
    2. supersonic
    3. isosonic
    4. hypersonic
    5. infrasonic
  11. A sound wave is different from a light wave in that a sound wave is:
    1. produced by a vibrating object and a light wave is not.
    2. not capable of travelling through a vacuum.
    3. not capable of diffracting and a light wave is.
    4. capable of existing with a variety of frequencies and a light wave has a single frequency.
  12. At the same temperature, sound waves have the fastest speed in:
    1. rock
    2. milk
    3. oxygen
    4. sand
  13. Two sound waves are traveling through a container of nitrogen gas. The first wave has a wavelength of 1,5 m, while the second wave has a wavelength of 4,5 m. The velocity of the second wave must be:
    1. 1 9 the velocity of the first wave.
    2. 1 3 the velocity of the first wave.
    3. the same as the velocity of the first wave.
    4. three times larger than the velocity of the first wave.
    5. nine times larger than the velocity of the first wave.
  14. Sound travels at a speed of 340 m · s - 1 . A straw is 0,25 m long. The standing wave set up in such a straw with one end closed has a wavelength of 1,0 m. The standing wave set up in such a straw with both ends open has a wavelength of 0,50 m.
    1. calculate the frequency of the sound created when you blow across the straw with the bottom end closed.
    2. calculate the frequency of the sound created when you blow across the straw with the bottom end open.
  15. A lightning storm creates both lightning and thunder. You see the lightning almost immediately since light travels at 3 × 10 8 m · s - 1 . After seeing the lightning, you count 5 s and then you hear the thunder. Calculate the distance to the location of the storm.
  16. A person is yelling from a second story window to another person standing at the garden gate, 50 m away. If the speed of sound is 344 m · s - 1 , how long does it take the sound to reach the person standing at the gate?
  17. A piece of equipment has a warning label on it that says, "Caution! This instrument produces 140 decibels." What safety precaution should you take before you turn on the instrument?
  18. What property of sound is a measure of the amount of energy carried by a sound wave?
  19. How is intensity related to loudness?
  20. Person 1 speaks to person 2. Explain how the sound is created by person 1 and how it is possible for person 2 to hear the conversation.
  21. Sound cannot travel in space. Discuss what other modes of communication astronauts can use when they are outside the space shuttle?
  22. An automatic focus camera uses an ultrasonic sound wave to focus on objects. The camera sends out sound waves which are reflected off distant objects and return to the camera. A sensor detects the time it takes for the waves to return and then determines the distance an object is from the camera. If a sound wave (speed = 344 m · s - 1 ) returns to the camera 0,150 s after leaving the camera, how far away is the object?
  23. Calculate the frequency (in Hz) and wavelength of the annoying sound made by a mosquito when it beats its wings at the average rate of 600 wing beats per second. Assume the speed of the sound waves is 344 m · s - 1 .
  24. How does halving the frequency of a wave source affect the speed of the waves?
  25. Humans can detect frequencies as high as 20 000 Hz. Assuming the speed of sound in air is 344 m · s - 1 , calculate the wavelength of the sound corresponding to the upper range of audible hearing.
  26. An elephant trumpets at 10 Hz. Assuming the speed of sound in air is 344 m · s - 1 , calculate the wavelength of this infrasonic sound wave made by the elephant.
  27. A ship sends a signal out to determine the depth of the ocean. The signal returns 2,5 seconds later. If sound travels at 1450 m.s - 1 in sea water, how deep is the ocean at that point?

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 11 physical science. OpenStax CNX. Jul 29, 2011 Download for free at http://cnx.org/content/col11241/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 11 physical science' conversation and receive update notifications?

Ask