<< Chapter < Page Chapter >> Page >
  • Describe the principle of conservation of momentum.
  • Derive an expression for the conservation of momentum.
  • Explain conservation of momentum with examples.
  • Explain the principle of conservation of momentum as it relates to atomic and subatomic particles.

Momentum is an important quantity because it is conserved. Yet it was not conserved in the examples in Impulse and Linear Momentum and Force , where large changes in momentum were produced by forces acting on the system of interest. Under what circumstances is momentum conserved?

The answer to this question entails considering a sufficiently large system. It is always possible to find a larger system in which total momentum is constant, even if momentum changes for components of the system. If a football player runs into the goalpost in the end zone, there will be a force on him that causes him to bounce backward. However, the Earth also recoils —conserving momentum—because of the force applied to it through the goalpost. Because Earth is many orders of magnitude more massive than the player, its recoil is immeasurably small and can be neglected in any practical sense, but it is real nevertheless.

Consider what happens if the masses of two colliding objects are more similar than the masses of a football player and Earth—for example, one car bumping into another, as shown in [link] . Both cars are coasting in the same direction when the lead car (labeled m 2 ) size 12{m rSub { size 8{2} } \) } {} is bumped by the trailing car (labeled m 1 ) . size 12{m rSub { size 8{1} } \) "." } {} The only unbalanced force on each car is the force of the collision. (Assume that the effects due to friction are negligible.) Car 1 slows down as a result of the collision, losing some momentum, while car 2 speeds up and gains some momentum. We shall now show that the total momentum of the two-car system remains constant.

A brown car with velocity V 1 and mass m 1 moves toward the right behind a tan car of velocity V 2 and mass m 2. The system of interest has a total momentum equal to the sum of individual momentums p 1 and p 2. The net force between them is zero before they collide with one another. The brown car after colliding with the tan car has velocity V 1prime and momentum p 1 prime and the light brown car moves with velocity V 2 prime and momentum p 2 prime. Both move in the same direction as before collision. This system of interest has a total momentum equal to the sum p 1 prime and p 2 prime.
A car of mass m 1 size 12{m rSub { size 8{1} } } {} moving with a velocity of v 1 size 12{v rSub { size 8{1} } } {} bumps into another car of mass m 2 size 12{m rSub { size 8{2} } } {} and velocity v 2 size 12{v rSub { size 8{2} } } {} that it is following. As a result, the first car slows down to a velocity of v′ 1 size 12{ { {v}} sup { ' } rSub { size 8{1} } } {} and the second speeds up to a velocity of v′ 2 size 12{ { {v}} sup { ' } rSub { size 8{2} } } {} . The momentum of each car is changed, but the total momentum p tot size 12{p rSub { size 8{"tot"} } } {} of the two cars is the same before and after the collision (if you assume friction is negligible).

Using the definition of impulse, the change in momentum of car 1 is given by

Δ p 1 = F 1 Δ t , size 12{Δp rSub { size 8{1} } =F rSub { size 8{1} } Δt} {}

where F 1 size 12{F"" lSub { size 8{1} } } {} is the force on car 1 due to car 2, and Δ t size 12{Δt} {} is the time the force acts (the duration of the collision). Intuitively, it seems obvious that the collision time is the same for both cars, but it is only true for objects traveling at ordinary speeds. This assumption must be modified for objects travelling near the speed of light, without affecting the result that momentum is conserved.

Similarly, the change in momentum of car 2 is

Δ p 2 = F 2 Δ t, size 12{Δp rSub { size 8{1} } =F rSub { size 8{1} } Δt} {}

where F 2 is the force on car 2 due to car 1, and we assume the duration of the collision Δ t size 12{?t} {} is the same for both cars. We know from Newton’s third law that F 2 = F 1 size 12{F rSub { size 8{2} } = - F rSub { size 8{1} } } {} , and so

Δ p 2 = F 1 Δ t = Δ p 1 . size 12{Δp rSub { size 8{2} } = - F rSub { size 8{1} } Δt= - Δp rSub { size 8{1} } } {}

Thus, the changes in momentum are equal and opposite, and

Δ p 1 + Δ p 2 = 0 . size 12{Δp rSub { size 8{1} } +Δp rSub { size 8{2} } =0} {}

Because the changes in momentum add to zero, the total momentum of the two-car system is constant. That is,

Questions & Answers

are nano particles real
Missy Reply
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
Lale Reply
no can't
Lohitha
where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
Berger describes sociologists as concerned with
Mueller Reply
what is hormones?
Wellington
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics 105: adventures in physics. OpenStax CNX. Dec 02, 2015 Download for free at http://legacy.cnx.org/content/col11916/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics 105: adventures in physics' conversation and receive update notifications?

Ask