<< Chapter < Page Chapter >> Page >

Intermolecular forces in liquids

Intermolecular forces affect a number of properties in liquids:

  • Surface tension You may have noticed how some insects are able to walk across a water surface, and how leaves float in water. This is because of surface tension. In water, each molecule is held to the surrounding molecules by strong hydrogen bonds. Molecules in the centre of the liquid are completely surrounded by other molecules, so these forces are exerted in all directions. However, molecules at the surface do not have any water molecules above them to pull them upwards. Because they are only pulled sideways and downwards, the water molecules at the surface are held more closely together. This is called surface tension .
    Surface tension in a liquid
  • Evaporation In a liquid, each particle has kinetic energy, but some particles will have more energy than others. We therefore refer to the average kinetic energy of the molecules when we describe the liquid. When the liquid is heated, those particles which have the highest energy will be able to overcome the intermolecular forces holding them in the liquid phase, and will become a gas. This is called evaporation . Evaporation occurs when a liquid changes to a gas. The stronger the intermolecular forces in a liquid, the higher the temperature of the molecules will have to be for it to become a gas. You should note that a liquid doesn't necessarily have to reach boiling point before evaporation can occur. Evaporation takes place all the time. You will see this if you leave a glass of water outside in the sun. Slowly the water level will drop over a period of time. What happens then to the molecules of water that remain in the liquid? Remember that it was the molecules with the highest energy that left the liquid. This means that the average kinetic energy of the remaining molecules will decrease, and so will the temperature of the liquid. A similar process takes place when a person sweats during exercise. When you exercise, your body temperature increases and you begin to release moisture (sweat) through the pores in your skin. The sweat quickly evaporates and causes the temperature of your skin to drop. This helps to keep your body temperature at a level that is suitable for it to function properly.
  • Capillarity

Investigation : capillarity

Half fill a beaker with water and hold a hollow glass tube in the centre as shown below. Mark the level of the water in the glass tube, and look carefully at the shape of the air-water interface in the tube. What do you notice?

At the air-water interface, you will notice a meniscus , where the water appears to dip in the centre. In the glass tube, the attractive forces between the glass and the water are stronger than the intermolecular forces between the water molecules. This causes the water to be held more closely to the glass, and a meniscus forms. The forces between the glass and the water also mean that the water can be 'pulled up' higher when it is in the tube than when it is in the beaker. Capillarity is the surface tension that occurs in liquids that are inside tubes.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 11 physical science. OpenStax CNX. Jul 29, 2011 Download for free at http://cnx.org/content/col11241/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 11 physical science' conversation and receive update notifications?

Ask