<< Chapter < Page Chapter >> Page >

Change in momentum

Let us consider a tennis ball (mass = 0,1 kg) that is dropped at an initial velocity of 5 m · s - 1 and bounces back at a final velocity of 3 m · s - 1 . As the ball approaches the floor it has a momentum that we call the momentum before the collision. When it moves away from the floor it has a different momentum called the momentum after the collision. The bounce on the floor can be thought of as a collision taking place where the floor exerts a force on the tennis ball to change its momentum.

The momentum before the bounce can be calculated as follows:

Because momentum and velocity are vectors, we have to choose a direction as positive. For this example we choose the initial direction of motion as positive, in other words, downwards is positive.

p i = m · v i = ( 0 , 1 kg ) ( + 5 m · s - 1 ) = 0 , 5 kg · m · s - 1 downwards

When the tennis ball bounces back it changes direction. The final velocity will thus have a negative value. The momentum after the bounce can be calculated as follows:

p f = m · v f = ( 0 , 1 kg ) ( - 3 m · s - 1 ) = - 0 , 3 kg · m · s - 1 = 0 , 3 kg · m · s - 1 upwards

Now let us look at what happens to the momentum of the tennis ball. The momentum changes during this bounce. We can calculate the change in momentum as follows:

Again we have to choose a direction as positive and we will stick to our initial choice as downwards is positive. This means that the final momentum will have a negative number.

Δ p = p f - p i = m · v f - m · v i = ( - 0 , 3 kg ) - ( 0 , 5 m · s - 1 ) = - 0 , 8 kg · m · s - 1 = 0 , 8 kg · m · s - 1 upwards

You will notice that this number is bigger than the previous momenta calculated. This is should be the case as the ball needed to be stopped and then given momentum to bounce back.

A rubber ball of mass 0,8 kg is dropped and strikes the floor with an initial velocity of 6 m · s - 1 . It bounces back with a final velocity of 4 m · s - 1 . Calculate the change in the momentum of the rubber ball caused by the floor.

  1. The question explicitly gives

    • the ball's mass (m = 0,8 kg),
    • the ball's initial velocity (v i = 6 m · s - 1 ), and
    • the ball's final velocity (v f = 4 m · s - 1 )

    all in the correct units.

    We are asked to calculate the change in momentum of the ball,

    Δ p = m v f - m v i

    We have everything we need to find Δ p . Since the initial momentum is directed downwards and the final momentum is in the upward direction, we can use the algebraic method of subtraction discussed in the vectors chapter.

  2. Let us choose down as the positive direction.

  3. Δ p = m v f - m v i = ( 0 , 8 kg ) ( - 4 m · s - 1 ) - ( 0 , 8 kg ) ( + 6 m · s - 1 ) = ( - 3 , 2 kg · m · s - 1 ) - ( 4 , 8 kg · m · s - 1 ) = - 8 = 8 kg · m · s - 1 upwards
Got questions? Get instant answers now!

Exercise

  1. Which expression accurately describes the change of momentum of an object?
    1. F m
    2. F t
    3. F · m
    4. F · t
  2. A child drops a ball of mass 100 g. The ball strikes the ground with a velocity of 5 m · s - 1 and rebounds with a velocity of 4 m · s - 1 . Calculate the change of momentum of the ball.
  3. A 700 kg truck is travelling north at a velocity of 40 km · hr - 1 when it is approached by a 500 kg car travelling south at a velocity of 100 km · hr - 1 . Calculate the total momentum of the system.

Newton's second law revisited

You have learned about Newton's Second Law of motion earlier in this chapter. Newton's Second Law describes the relationship between the motion of an object and the net force on the object. We said that the motion of an object, and therefore its momentum, can only change when a resultant force is acting on it. We can therefore say that because a net force causes an object to move, it also causes its momentum to change. We can now define Newton's Second Law of motion in terms of momentum.

Newton's Second Law of Motion (N2)

The net or resultant force acting on an object is equal to the rate of change of momentum.

Mathematically, Newton's Second Law can be stated as:

F n e t = Δ p Δ t

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 11 physical science. OpenStax CNX. Jul 29, 2011 Download for free at http://cnx.org/content/col11241/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 11 physical science' conversation and receive update notifications?

Ask