<< Chapter < Page Chapter >> Page >
1 psi = 6895 Pa and 1 Pa = 1.450 × 10 −4 psi 1 atm = 1.013 × 10 5 Pa = 14.7 psi.

An object or medium under stress becomes deformed. The quantity that describes this deformation is called strain    . Strain is given as a fractional change in either length (under tensile stress) or volume (under bulk stress) or geometry (under shear stress). Therefore, strain is a dimensionless number. Strain under a tensile stress is called tensile strain    , strain under bulk stress is called bulk strain    (or volume strain ), and that caused by shear stress is called shear strain    .

The greater the stress, the greater the strain; however, the relation between strain and stress does not need to be linear. Only when stress is sufficiently low is the deformation it causes in direct proportion to the stress value. The proportionality constant in this relation is called the elastic     modulus . In the linear limit of low stress values, the general relation between stress and strain is

stress = (elastic modulus) × strain.

As we can see from dimensional analysis of this relation, the elastic modulus has the same physical unit as stress because strain is dimensionless.

We can also see from [link] that when an object is characterized by a large value of elastic modulus, the effect of stress is small. On the other hand, a small elastic modulus means that stress produces large strain and noticeable deformation. For example, a stress on a rubber band produces larger strain (deformation) than the same stress on a steel band of the same dimensions because the elastic modulus for rubber is two orders of magnitude smaller than the elastic modulus for steel.

The elastic modulus for tensile stress is called Young’s modulus    ; that for the bulk stress is called the bulk modulus    ; and that for shear stress is called the shear modulus    . Note that the relation between stress and strain is an observed relation, measured in the laboratory. Elastic moduli for various materials are measured under various physical conditions, such as varying temperature, and collected in engineering data tables for reference ( [link] ). These tables are valuable references for industry and for anyone involved in engineering or construction. In the next section, we discuss strain-stress relations beyond the linear limit represented by [link] , in the full range of stress values up to a fracture point. In the remainder of this section, we study the linear limit expressed by [link] .

Approximate elastic moduli for selected materials
Material Young’s modulus
× 10 10 Pa
Bulk modulus
× 10 10 Pa
Shear modulus
× 10 10 Pa
Aluminum 7.0 7.5 2.5
Bone (tension) 1.6 0.8 8.0
Bone (compression) 0.9
Brass 9.0 6.0 3.5
Brick 1.5
Concrete 2.0
Copper 11.0 14.0 4.4
Crown glass 6.0 5.0 2.5
Granite 4.5 4.5 2.0
Hair (human) 1.0
Hardwood 1.5 1.0
Iron 21.0 16.0 7.7
Lead 1.6 4.1 0.6
Marble 6.0 7.0 2.0
Nickel 21.0 17.0 7.8
Polystyrene 3.0
Silk 6.0
Spider thread 3.0
Steel 20.0 16.0 7.5
Acetone 0.07
Ethanol 0.09
Glycerin 0.45
Mercury 2.5
Water 0.22

Tensile or compressive stress, strain, and young’s modulus

Tension or compression occurs when two antiparallel forces of equal magnitude act on an object along only one of its dimensions, in such a way that the object does not move. One way to envision such a situation is illustrated in [link] . A rod segment is either stretched or squeezed by a pair of forces acting along its length and perpendicular to its cross-section. The net effect of such forces is that the rod changes its length from the original length L 0 that it had before the forces appeared, to a new length L that it has under the action of the forces. This change in length Δ L = L L 0 may be either elongation (when L is larger than the original length L 0 ) or contraction (when L is smaller than the original length L 0 ) . Tensile stress and strain occur when the forces are stretching an object, causing its elongation, and the length change Δ L is positive. Compressive stress and strain occur when the forces are contracting an object, causing its shortening, and the length change Δ L is negative.

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask