<< Chapter < Page Chapter >> Page >
A photo of a dam erected on a river.
The Three Gorges Dam, erected on the Yangtze River in central China in 2008, created a massive reservoir that displaced more than one million people. (credit: “Le Grand Portage”/Flickr)

What force must a dam withstand?

Consider the pressure and force acting on the dam retaining a reservoir of water ( [link] ). Suppose the dam is 500-m wide and the water is 80.0-m deep at the dam, as illustrated below. (a) What is the average pressure on the dam due to the water? (b) Calculate the force exerted against the dam.

Figure is a schematic drawing of a dam with length L and height h erected on the river. There is a small canoe in the river with a single passenger. The formulas F equals p times A, and p equals h times p times g are included in this illustration.

The average pressure p due to the weight of the water is the pressure at the average depth h of 40.0 m, since pressure increases linearly with depth. The force exerted on the dam by the water is the average pressure times the area of contact, F = p A .

Solution

  1. The average pressure due to the weight of a fluid is
    p = h ρ g .

    Entering the density of water from [link] and taking h to be the average depth of 40.0 m, we obtain
    p = ( 40.0 m ) ( 10 3 kg m 3 ) ( 9.80 m s 2 ) = 3.92 × 10 5 N m 2 = 392 kPa .
  2. We have already found the value for p . The area of the dam is
    A = 80.0 m × 500 m = 4.00 × 10 4 m 2 ,

    so that
    F = ( 3.92 × 10 5 N/m 2 ) ( 4.00 × 10 4 m 2 ) = 1.57 × 10 10 N .

Significance

Although this force seems large, it is small compared with the 1.96 × 10 13 N weight of the water in the reservoir. In fact, it is only 0.0800% of the weight.

Got questions? Get instant answers now!

Check Your Understanding If the reservoir in [link] covered twice the area, but was kept to the same depth, would the dam need to be redesigned?

The pressure found in part (a) of the example is completely independent of the width and length of the lake; it depends only on its average depth at the dam. Thus, the force depends only on the water’s average depth and the dimensions of the dam, not on the horizontal extent of the reservoir. In the diagram, note that the thickness of the dam increases with depth to balance the increasing force due to the increasing pressure.

Got questions? Get instant answers now!

Pressure in a static fluid in a uniform gravitational field

A static fluid is a fluid that is not in motion. At any point within a static fluid, the pressure on all sides must be equal—otherwise, the fluid at that point would react to a net force and accelerate.

The pressure at any point in a static fluid depends only on the depth at that point. As discussed, pressure in a fluid near Earth varies with depth due to the weight of fluid above a particular level. In the above examples, we assumed density to be constant and the average density of the fluid to be a good representation of the density. This is a reasonable approximation for liquids like water, where large forces are required to compress the liquid or change the volume. In a swimming pool, for example, the density is approximately constant, and the water at the bottom is compressed very little by the weight of the water on top. Traveling up in the atmosphere is quite a different situation, however. The density of the air begins to change significantly just a short distance above Earth’s surface.

To derive a formula for the variation of pressure with depth in a tank containing a fluid of density ρ on the surface of Earth, we must start with the assumption that the density of the fluid is not constant. Fluid located at deeper levels is subjected to more force than fluid nearer to the surface due to the weight of the fluid above it. Therefore, the pressure calculated at a given depth is different than the pressure calculated using a constant density.

Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask