<< Chapter < Page Chapter >> Page >

Many-to-many

The extreme case on the other end is if two or more objects approach each other, collide, and bounce off each other, moving away from each other at the same relative speed at which they approached each other. In this case, the total kinetic energy of the system is conserved. Such an interaction is called elastic    .

In any interaction of a closed system of objects, the total momentum of the system is conserved ( p f = p i ) but the kinetic energy may not be:

  • If 0 < K f < K i , the collision is inelastic.
  • If K f = 0 , the collision is perfectly inelastic.
  • If K f = K i , the collision is elastic.
  • If K f > K i , the interaction is an explosion.

The point of all this is that, in analyzing a collision or explosion, you can use both momentum and kinetic energy.

Problem-solving strategy: collisions

A closed system always conserves momentum; it might also conserve kinetic energy, but very often it doesn’t. Energy-momentum problems confined to a plane (as ours are) usually have two unknowns. Generally, this approach works well:

  1. Define a closed system.
  2. Write down the expression for conservation of momentum.
  3. If kinetic energy is conserved, write down the expression for conservation of kinetic energy; if not, write down the expression for the change of kinetic energy.
  4. You now have two equations in two unknowns, which you solve by standard methods.

Formation of a deuteron

A proton (mass 1.67 × 10 −27 kg ) collides with a neutron (with essentially the same mass as the proton) to form a particle called a deuteron . What is the velocity of the deuteron if it is formed from a proton moving with velocity 7.0 × 10 6 m/s to the left and a neutron moving with velocity 4.0 × 10 6 m/s to the right?

Before collision, proton on the left is moving with v sub proton to the right of 7.0 times 10 to the 6 meters per second, and neutron on the right is moving with v sub neutron to the left of -4.0 times 10 to the 6 meters per second. After collision, the proton and deuteron are stuck together, and have unknown v sub deuteron.

Strategy

Define the system to be the two particles. This is a collision, so we should first identify what kind. Since we are told the two particles form a single particle after the collision, this means that the collision is perfectly inelastic. Thus, kinetic energy is not conserved, but momentum is. Thus, we use conservation of energy to determine the final velocity of the system.

Solution

Treat the two particles as having identical masses M . Use the subscripts p, n, and d for proton, neutron, and deuteron, respectively. This is a one-dimensional problem, so we have

M v p M v n = 2 M v d .

The masses divide out:

v p v n = 2 v d 7.0 × 10 6 m/s 4.0 × 10 6 m/s = 2 v d v d = 1.5 × 10 6 m/s.

The velocity is thus v d = ( 1.5 × 10 6 m/s ) i ^ .

Significance

This is essentially how particle colliders like the Large Hadron Collider work: They accelerate particles up to very high speeds (large momenta), but in opposite directions. This maximizes the creation of so-called “daughter particles.”

Got questions? Get instant answers now!

Ice hockey 2

(This is a variation of an earlier example.)

Two ice hockey pucks of different masses are on a flat, horizontal hockey rink. The red puck has a mass of 15 grams, and is motionless; the blue puck has a mass of 12 grams, and is moving at 2.5 m/s to the left. It collides with the motionless red puck ( [link] ). If the collision is perfectly elastic, what are the final velocities of the two pucks?

Two hockey pucks are shown. The top diagram shows the puck on the left with 0 meters per second and the puck on the right moving to the left with 2.5 meters per second. The bottom diagram shows the puck on the left moving to the left at unknown v sub 1 f and the puck on the right moving with unknown v sub 2 f.
Two different hockey pucks colliding. The top diagram shows the pucks the instant before the collision, and the bottom diagram show the pucks the instant after the collision. The net external force is zero.

Strategy

We’re told that we have two colliding objects, and we’re told their masses and initial velocities, and one final velocity; we’re asked for both final velocities. Conservation of momentum seems like a good strategy; define the system to be the two pucks. There is no friction, so we have a closed system. We have two unknowns (the two final velocities), but only one equation. The comment about the collision being perfectly elastic is the clue; it suggests that kinetic energy is also conserved in this collision. That gives us our second equation.

The initial momentum and initial kinetic energy of the system resides entirely and only in the second puck (the blue one); the collision transfers some of this momentum and energy to the first puck.

Solution

Conservation of momentum, in this case, reads

p i = p f m 2 v 2,i = m 1 v 1,f + m 2 v 2,f .

Conservation of kinetic energy reads

K i = K f 1 2 m 2 v 2,i 2 = 1 2 m 1 v 1,f 2 + 1 2 m 2 v 2,f 2 .

There are our two equations in two unknowns. The algebra is tedious but not terribly difficult; you definitely should work it through. The solution is

v 1,f = ( m 1 m 2 ) v 1,i + 2 m 2 v 2,i m 1 + m 2 v 2 f = ( m 2 m 1 ) v 2,i + 2 m 1 v 1,i m 1 + m 2 .

Substituting the given numbers, we obtain

v 1,f = 2.22 m s v 2,f = −0.28 m s .

Significance

Notice that after the collision, the blue puck is moving to the right; its direction of motion was reversed. The red puck is now moving to the left.

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask