# 3.4 Motion with constant acceleration  (Page 7/10)

 Page 7 / 10

## Strategy

We use the set of equations for constant acceleration to solve this problem. Since there are two objects in motion, we have separate equations of motion describing each animal. But what links the equations is a common parameter that has the same value for each animal. If we look at the problem closely, it is clear the common parameter to each animal is their position x at a later time t . Since they both start at ${x}_{0}=0$ , their displacements are the same at a later time t , when the cheetah catches up with the gazelle. If we pick the equation of motion that solves for the displacement for each animal, we can then set the equations equal to each other and solve for the unknown, which is time.

## Solution

1. Equation for the gazelle: The gazelle has a constant velocity, which is its average velocity, since it is not accelerating. Therefore, we use [link] with ${x}_{0}=0$ :
$x={x}_{0}+\stackrel{\text{–}}{v}t=\stackrel{\text{–}}{v}t.$

Equation for the cheetah: The cheetah is accelerating from rest, so we use [link] with ${x}_{0}=0$ and ${v}_{0}=0$ :
$x={x}_{0}+{v}_{0}t+\frac{1}{2}a{t}^{2}=\frac{1}{2}a{t}^{2}.$

Now we have an equation of motion for each animal with a common parameter, which can be eliminated to find the solution. In this case, we solve for t :
$\begin{array}{}\\ \\ x=\stackrel{\text{–}}{v}t=\frac{1}{2}a{t}^{2}\hfill \\ t=\frac{2\stackrel{\text{–}}{v}}{a}.\hfill \end{array}$

The gazelle has a constant velocity of 10 m/s, which is its average velocity. The acceleration of the cheetah is 4 m/s 2 . Evaluating t , the time for the cheetah to reach the gazelle, we have
$t=\frac{2\stackrel{\text{–}}{v}}{a}=\frac{2\left(10\right)}{4}=5\phantom{\rule{0.2em}{0ex}}\text{s}\text{.}$
2. To get the displacement, we use either the equation of motion for the cheetah or the gazelle, since they should both give the same answer.
Displacement of the cheetah:
$x=\frac{1}{2}a{t}^{2}=\frac{1}{2}\left(4\right){\left(5\right)}^{2}=50\phantom{\rule{0.2em}{0ex}}\text{m}\text{.}$

Displacement of the gazelle:
$x=\stackrel{\text{–}}{v}t=10\left(5\right)=50\phantom{\rule{0.2em}{0ex}}\text{m}\text{.}$

We see that both displacements are equal, as expected.

## Significance

It is important to analyze the motion of each object and to use the appropriate kinematic equations to describe the individual motion. It is also important to have a good visual perspective of the two-body pursuit problem to see the common parameter that links the motion of both objects.

Check Your Understanding A bicycle has a constant velocity of 10 m/s. A person starts from rest and runs to catch up to the bicycle in 30 s. What is the acceleration of the person?

$a=\frac{2}{3}{\phantom{\rule{0.2em}{0ex}}\text{m/s}}^{2}$ .

## Summary

• When analyzing one-dimensional motion with constant acceleration, identify the known quantities and choose the appropriate equations to solve for the unknowns. Either one or two of the kinematic equations are needed to solve for the unknowns, depending on the known and unknown quantities.
• Two-body pursuit problems always require two equations to be solved simultaneously for the unknowns.

## Conceptual questions

When analyzing the motion of a single object, what is the required number of known physical variables that are needed to solve for the unknown quantities using the kinematic equations?

State two scenarios of the kinematics of single object where three known quantities require two kinematic equations to solve for the unknowns.

If the acceleration, time, and displacement are the knowns, and the initial and final velocities are the unknowns, then two kinematic equations must be solved simultaneously. Also if the final velocity, time, and displacement are the knowns then two kinematic equations must be solved for the initial velocity and acceleration.

definition of inertia
the reluctance of a body to start moving when it is at rest and to stop moving when it is in motion
charles
An inherent property by virtue of which the body remains in its pure state or initial state
Kushal
why current is not a vector quantity , whereas it have magnitude as well as direction.
why
daniel
the flow of current is not current
fitzgerald
bcoz it doesn't satisfy the algabric laws of vectors
Shiekh
The Electric current can be defined as the dot product of the current density and the differential cross-sectional area vector : ... So the electric current is a scalar quantity . Scalars are related to tensors by the fact that a scalar is a tensor of order or rank zero .
Kushal
what is binomial theorem
what is binary operations
Tollum
What is the formula to calculat parallel forces that acts in opposite direction?
position, velocity and acceleration of vector
hi
peter
hi
daniel
hi
Vedisha
*a plane flies with a velocity of 1000km/hr in a direction North60degree east.find it effective velocity in the easterly and northerly direction.*
imam
hello
Lydia
hello Lydia.
Sackson
What is momentum
isijola
hello
A rail way truck of mass 2400kg is hung onto a stationary trunk on a level track and collides with it at 4.7m|s. After collision the two trunk move together with a common speed of 1.2m|s. Calculate the mass of the stationary trunk
I need the solving for this question
philip
is the eye the same like the camera
I can't understand
Suraia
Josh
I think the question is that ,,, the working principal of eye and camera same or not?
Sardar
yes i think is same as the camera
what are the dimensions of surface tension
samsfavor
why is the "_" sign used for a wave to the right instead of to the left?
why classical mechanics is necessary for graduate students?
classical mechanics?
Victor
principle of superposition?
principle of superposition allows us to find the electric field on a charge by finding the x and y components
Kidus
Two Masses,m and 2m,approach each along a path at right angles to each other .After collision,they stick together and move off at 2m/s at angle 37° to the original direction of the mass m. What where the initial speeds of the two particles
MB
2m & m initial velocity 1.8m/s & 4.8m/s respectively,apply conservation of linear momentum in two perpendicular directions.
Shubhrant
A body on circular orbit makes an angular displacement given by teta(t)=2(t)+5(t)+5.if time t is in seconds calculate the angular velocity at t=2s
MB
2+5+0=7sec differentiate above equation w.r.t time, as angular velocity is rate of change of angular displacement.
Shubhrant
Ok i got a question I'm not asking how gravity works. I would like to know why gravity works. like why is gravity the way it is. What is the true nature of gravity?
gravity pulls towards a mass...like every object is pulled towards earth
Ashok
An automobile traveling with an initial velocity of 25m/s is accelerated to 35m/s in 6s,the wheel of the automobile is 80cm in diameter. find * The angular acceleration
(10/6) ÷0.4=4.167 per sec
Shubhrant
what is the formula for pressure?
force/area
Kidus
force is newtom
Kidus
and area is meter squared
Kidus
so in SI units pressure is N/m^2
Kidus
In customary United States units pressure is lb/in^2. pound per square inch
Kidus
who is Newton?
scientist
Jeevan
a scientist
Peter
that discovered law of motion
Peter
ok
John
but who is Isaac newton?
John
a postmodernist would say that he did not discover them, he made them up and they're not actually a reality in itself, but a mere construct by which we decided to observe the word around us
elo
how?
Qhoshe
Besides his work on universal gravitation (gravity), Newton developed the 3 laws of motion which form the basic principles of modern physics. His discovery of calculus led the way to more powerful methods of solving mathematical problems. His work in optics included the study of white light and
Daniel
and the color spectrum
Daniel