<< Chapter < Page Chapter >> Page >

The angular frequency for damped harmonic motion becomes

ω = ω 0 2 ( b 2 m ) 2 .
The figure shows a graph of displacement, x in meters, along the vertical axis, versus time in seconds along the horizontal axis. The displacement ranges from minus A sub zero to plus A sub zero and the time ranges from 0 to 10 T. The displacement, shown by a blue curve, oscillates between positive maxima and negative minima, forming a wave whose amplitude is decreasing gradually as we move far from t=0. The time, T, between adjacent crests remains the same throughout. The envelope, the smooth curve that connects the crests and another smooth curve that connects the troughs of the oscillations, is shown as a pair of dashed red lines. The upper curve connecting the crests is labeled as plus A sub zero times e to the quantity minus b t over 2 m. The lower curve connecting the troughs is labeled as minus A sub zero times e to the quantity minus b t over 2 m.
Position versus time for the mass oscillating on a spring in a viscous fluid. Notice that the curve appears to be a cosine function inside an exponential envelope.

Recall that when we began this description of damped harmonic motion, we stated that the damping must be small. Two questions come to mind. Why must the damping be small? And how small is small? If you gradually increase the amount of damping in a system, the period and frequency begin to be affected, because damping opposes and hence slows the back and forth motion. (The net force is smaller in both directions.) If there is very large damping, the system does not even oscillate—it slowly moves toward equilibrium. The angular frequency is equal to

ω = k m ( b 2 m ) 2 .

As b increases, k m ( b 2 m ) 2 becomes smaller and eventually reaches zero when b = 4 m k . If b becomes any larger, k m ( b 2 m ) 2 becomes a negative number and k m ( b 2 m ) 2 is a complex number.

[link] shows the displacement of a harmonic oscillator for different amounts of damping. When the damping constant is small, b < 4 m k , the system oscillates while the amplitude of the motion decays exponentially. This system is said to be underdamped    , as in curve (a). Many systems are underdamped, and oscillate while the amplitude decreases exponentially, such as the mass oscillating on a spring. The damping may be quite small, but eventually the mass comes to rest. If the damping constant is b = 4 m k , the system is said to be critically damped    , as in curve (b). An example of a critically damped system is the shock absorbers in a car. It is advantageous to have the oscillations decay as fast as possible. Here, the system does not oscillate, but asymptotically approaches the equilibrium condition as quickly as possible. Curve (c) in [link] represents an overdamped    system where b > 4 m k . An overdamped system will approach equilibrium over a longer period of time.

The position, x in meters on the vertical axis, versus time in seconds on the horizontal axis, with varying degrees of damping. No scale is given for either axis. All three curves start at the same positive position at time zero. Blue curve a, labeled with b squared is less than 4 m k, undergoes a little over two and a quarter oscillations of decreasing amplitude and constant period. Red curve b, labeled with b squared is equal to 4 m k, decreases at t=0 less rapidly than the blue curve, but does not oscillate. The red curve approaches x=0 asymptotically, and is nearly zero within one oscillation of the blue curve. Green curve c, labeled with b squared is greater than 4 m k, decreases at t=0 less rapidly than the red curve, and does not oscillate. The green curve approaches x=0 asymptotically, but is still noticeably above zero at the end of the graph, after more than two oscillations of the blue curve.
The position versus time for three systems consisting of a mass and a spring in a viscous fluid. (a) If the damping is small ( b < 4 m k ) , the mass oscillates, slowly losing amplitude as the energy is dissipated by the non-conservative force(s). The limiting case is (b) where the damping is ( b = 4 m k ) . (c) If the damping is very large ( b > 4 m k ) , the mass does not oscillate when displaced, but attempts to return to the equilibrium position.

Critical damping is often desired, because such a system returns to equilibrium rapidly and remains at equilibrium as well. In addition, a constant force applied to a critically damped system moves the system to a new equilibrium position in the shortest time possible without overshooting or oscillating about the new position.

Check Your Understanding Why are completely undamped harmonic oscillators so rare?

Friction often comes into play whenever an object is moving. Friction causes damping in a harmonic oscillator.

Got questions? Get instant answers now!

Summary

  • Damped harmonic oscillators have non-conservative forces that dissipate their energy.
  • Critical damping returns the system to equilibrium as fast as possible without overshooting.
  • An underdamped system will oscillate through the equilibrium position.
  • An overdamped system moves more slowly toward equilibrium than one that is critically damped.

Conceptual questions

Give an example of a damped harmonic oscillator. (They are more common than undamped or simple harmonic oscillators.)

A car shock absorber.

Got questions? Get instant answers now!

How would a car bounce after a bump under each of these conditions?

(a) overdamping

(b) underdamping

(c) critical damping

Got questions? Get instant answers now!

Most harmonic oscillators are damped and, if undriven, eventually come to a stop. Why?

The second law of thermodynamics states that perpetual motion machines are impossible. Eventually the ordered motion of the system decreases and returns to equilibrium.

Got questions? Get instant answers now!

Problems

The amplitude of a lightly damped oscillator decreases by 3.0 % during each cycle. What percentage of the mechanical energy of the oscillator is lost in each cycle?

9%

Got questions? Get instant answers now!

Questions & Answers

In Example, we calculated the final speed of a roller coaster that descended 20 m in height and had an initial speed of 5 m/s downhill. Suppose the roller coaster had had an initial speed of 5 m/s uphill instead, and it coasted uphill, stopped, and then rolled back down to a final point 20 m bel
tan Reply
A steel lift column in a service station is 4 meter long and .2 meter in diameter. Young's modulus for steel is 20 X 1010N/m2.  By how much does the column shrink when a 5000- kg truck is on it?
Andiswa Reply
what exactly is a transverse wave
Dharmee Reply
does newton's first law mean that we don't need gravity to be attracted
Dharmee Reply
no, it just means that a brick isn't gonna move unless something makes it move. if in the air, moves down because of gravity. if on floor, doesn't move unless something has it move, like a hand pushing the brick. first law is that an object will stay at rest or motion unless another force acts upon
Grant
yeah but once gravity has already been exerted .. i am saying that it need not be constantly exerted now according to newtons first law
Dharmee
gravity is constantly being exerted. gravity is the force of attractiveness between two objects. you and another person exert a force on each other but the reason you two don't come together is because earth's effect on both of you is much greater
Grant
maybe the reason we dont come together is our inertia only and not gravity
Dharmee
this is the definition of inertia: a property of matter by which it continues in its existing state of rest or uniform motion in a straight line, unless that state is changed by an external force.
Grant
the earth has a much higher affect on us force wise that me and you together on each other, that's why we don't attract, relatively speaking of course
Grant
quite clear explanation but i just want my mind to be open to any theory at all .. its possible that maybe gravity does not exist at all or even the opposite can be true .. i dont want a fixed state of mind thats all
Dharmee
why wouldn't gravity exist? gravity is just the attractive force between two objects, at least to my understanding.
Grant
earth moves in a circular motion so yes it does need a constant force for a circular motion but incase of objects on earth i feel maybe there is no force of attraction towards the centre and its our inertia forcing us to stay at a point as once gravity had acted on the object
Dharmee
why should it exist .. i mean its all an assumption and the evidences are empirical
Dharmee
We have equations to prove it and lies of evidence to support. we orbit because we have a velocity and the sun is pulling us. Gravity is a law, we know it exists.
Grant
yeah sure there are equations but they are based on observations and assumptions
Dharmee
g is obtained by a simple pendulum experiment ...
Dharmee
gravity is tested by dropping a rock...
Grant
and also there were so many newtonian laws proved wrong by einstein . jus saying that its a law doesnt mean it cant be wrong
Dharmee
pendulum is good for showing energy transfer, here is an article on the detection of gravitational waves: ***ligo.org/detections.php
Grant
yeah but g is calculated by pendulum oscillations ..
Dharmee
thats what .. einstein s fabric model explains that force of attraction by sun on earth but i am talking about force of attraction by earth on objects on earth
Dharmee
no... this is how gravity is calculated:F = G*((m sub 1*m sub 2)/r^2)
Grant
gravitational constant is obtained EXPERIMENTALLY
Dharmee
the G part
Dharmee
Calculate the time of one oscillation or the period (T) by dividing the total time by the number of oscillations you counted. Use your calculated (T) along with the exact length of the pendulum (L) in the above formula to find "g." This is your measured value for "g."
Dharmee
G is the universal gravitational constant. F is the gravity
Grant
search up the gravity equation
Grant
yeahh G is obtained experimentally
Dharmee
sure yes
Grant
thats what .. after all its EXPERIMENTALLY calculated so its empirical
Dharmee
yes... so where do we disagree?
Grant
its empirical whixh means it can be proved wrong
Dharmee
so cant just say why wouldnt gravity exists
Dharmee
the constant, sure but extremely unlikely it is wrong. gravity however exists, there are equations and loads of support surrounding the concept. unfortunately I don't have a high enough background in physics but have this discussion with a physicist
Grant
can u suggest a platform where i can?
Dharmee
stack overflow
Grant
stack exchange, physics section***
Grant
its an app?
Dharmee
there is! it is also a website as well
Grant
okayy
Dharmee
nice talking to you
Dharmee
***physics.stackexchange.com/
Grant
likewise :)
Grant
What is the percentage by massof oxygen in Al2(so4)3
Isiguzo Reply
A spring with 50g mass suspended from it,has its length extended by 7.8cm 1.1 determine the spring constant? 1.2 it is observed that the length of the spring decreases by 4.7cm,from its original length, when a toy is place on top of it. what is the mass of the toy?
Silindelo Reply
solution mass = 50g= 0.05kg force= 50 x 10= 500N extension= 7.8cm = 0.078m using the formula Force= Ke K = force/extension 500/.078 = 6410.25N/m
Sampson
1.2 Decrease in length= -4.7cm =-0.047m mass=? acceleration due to gravity= 10 force = K x e force= mass x acceleration m x a = K x e mass = K x e/acceleration = 6410.25 x 0.047/10 = 30.13kg
Sampson
1.1 6.28Nm-¹
Anita
1.2 0.03kg or 30g
Anita
I used g=9.8ms-²
Anita
you should explain how yoy got the answer Anita
Grant
ok
Anita
with the fomular F=mg I got the value for force because now the force acting on the spring is the weight of the object and also you have to convert from grams to kilograms and cm to meter
Anita
so the spring constant K=F/e where F is force and e is extension
Anita
In this first example why didn't we use P=P° + ¶hg where ¶ is density
Anita Reply
Density = force applied x area p=fA =p = mga, then a=h therefore substitute =p =mgh
Hlehle
Please correct me
Hlehle
sorry I had a little typo in my question
Anita
Density = m/v (mass/volume) simple as that
Augustine
Hlehle vilakazi how density is equal to force * area and you also wrote p= mgh which is machenical potential energy ? how ?
Manorama
what is wave
Alfred Reply
who can state the third equation of motion
Alfred
wave is a distrubance that travelled in medium from one point to another with carry energy .
Manorama
wave is a periodic disturbance that carries energy from one medium to another..
Augustine
what exactly is a transverse wave then?
Dharmee
two particles rotate in a rigid body then acceleration will be ?
kinza Reply
same acceleration for all particles because all prticles will be moving with same angular velocity.so at any time interval u find same acceleration of all the prticles
Zaheer
what is electromagnetism
David Reply
It is the study of the electromagnetic force, one of the four fundamental forces of nature. ... It includes the electric force, which pushes all charged particles, and the magnetic force, which only pushes moving charges.
Energy
what is units?
Subhajit Reply
units as in how
praise
What is th formular for force
Joseph Reply
F = m x a
Santos
State newton's second law of motion
Seth Reply
can u tell me I cant remember
Indigo
force is equal to mass times acceleration
Santos
The acceleration of a system is directly proportional to the and in the same direction as the external force acting on the system and inversely proportional to its mass that is f=ma
David
The rate of change of momentum of a body is directly proportional to the force exerted on that body.
Rani
The uniform seesaw shown below is balanced on a fulcrum located 3.0 m from the left end. The smaller boy on the right has a mass of 40 kg and the bigger boy on the left has a mass 80 kg. What is the mass of the board?
Asad Reply
Consider a wave produced on a stretched spring by holding one end and shaking it up and down. Does the wavelength depend on the distance you move your hand up and down?
Sohail Reply
no, only the frequency and the material of the spring
Chun
how to read physics ncert?
Tech
beat line read important. line under line
Rahul
Practice Key Terms 4

Get the best University physics vol... course in your pocket!





Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask