# 14.7 Viscosity and turbulence  (Page 4/14)

 Page 4 / 14

## Using flow rate: air conditioning systems

An air conditioning system is being designed to supply air at a gauge pressure of 0.054 Pa at a temperature of $20\phantom{\rule{0.2em}{0ex}}\text{°}\text{C}.$ The air is sent through an insulated, round conduit with a diameter of 18.00 cm. The conduit is 20-meters long and is open to a room at atmospheric pressure 101.30 kPa. The room has a length of 12 meters, a width of 6 meters, and a height of 3 meters. (a) What is the volume flow rate through the pipe, assuming laminar flow? (b) Estimate the length of time to completely replace the air in the room. (c) The builders decide to save money by using a conduit with a diameter of 9.00 cm. What is the new flow rate?

## Strategy

Assuming laminar flow, Poiseuille’s law states that

$Q=\frac{\left({p}_{2}-{p}_{1}\right)\pi {r}^{4}}{8\eta l}=\frac{dV}{dt}.$

We need to compare the artery radius before and after the flow rate reduction. Note that we are given the diameter of the conduit, so we must divide by two to get the radius.

## Solution

1. Assuming a constant pressure difference and using the viscosity $\eta =0.0181\phantom{\rule{0.2em}{0ex}}\text{mPa}\cdot \text{s}$ ,
$Q=\frac{\left(0.054\phantom{\rule{0.2em}{0ex}}\text{Pa}\right)\left(3.14\right){\left(0.09\phantom{\rule{0.2em}{0ex}}\text{m}\right)}^{4}}{8\left(0.0181\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-3}\phantom{\rule{0.2em}{0ex}}\text{Pa}\cdot \text{s}\right)\left(20\phantom{\rule{0.2em}{0ex}}\text{m}\right)}=3.84\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-3}\phantom{\rule{0.2em}{0ex}}\frac{{\text{m}}^{3}}{\text{s}}.$
2. Assuming constant flow $Q=\frac{dV}{dt}\approx \frac{\text{Δ}V}{\text{Δ}t}$
$\text{Δ}t=\frac{\text{Δ}V}{Q}=\frac{\left(12\phantom{\rule{0.2em}{0ex}}\text{m}\right)\left(6\phantom{\rule{0.2em}{0ex}}\text{m}\right)\left(3\phantom{\rule{0.2em}{0ex}}\text{m}\right)}{3.84\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-3}\phantom{\rule{0.2em}{0ex}}\frac{{\text{m}}^{3}}{\text{s}}}=5.63\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{4}\phantom{\rule{0.2em}{0ex}}\text{s}=15.63\phantom{\rule{0.2em}{0ex}}\text{hr}.$
3. Using laminar flow, Poiseuille’s law yields
$Q=\frac{\left(0.054\phantom{\rule{0.2em}{0ex}}\text{Pa}\right)\left(3.14\right){\left(0.045\phantom{\rule{0.2em}{0ex}}\text{m}\right)}^{4}}{8\left(0.0181\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-3}\phantom{\rule{0.2em}{0ex}}\text{Pa}\cdot \text{s}\right)\left(20\phantom{\rule{0.2em}{0ex}}\text{m}\right)}=2.40\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-4}\phantom{\rule{0.2em}{0ex}}\frac{{\text{m}}^{3}}{\text{s}}.$

Thus, the radius of the conduit decreases by half reduces the flow rate to 6.25% of the original value.

## Significance

In general, assuming laminar flow, decreasing the radius has a more dramatic effect than changing the length. If the length is increased and all other variables remain constant, the flow rate is decreased:

$\begin{array}{ccc}\hfill \frac{{Q}_{A}}{{Q}_{B}}& =\hfill & \frac{\frac{\left({p}_{2}-{p}_{1}\right)\pi {r}_{A}^{4}}{8\eta {l}_{A}}}{\frac{\left({p}_{2}-{p}_{1}\right)\pi {r}_{B}^{4}}{8\eta {l}_{B}}}=\frac{{l}_{B}}{{l}_{A}}\hfill \\ \hfill {Q}_{B}& =\hfill & \frac{{l}_{A}}{{l}_{B}}{Q}_{A}.\hfill \end{array}$

Doubling the length cuts the flow rate to one-half the original flow rate.

If the radius is decreased and all other variables remain constant, the volume flow rate decreases by a much larger factor.

$\begin{array}{ccc}\hfill \frac{{Q}_{A}}{{Q}_{B}}& =\hfill & \frac{\frac{\left({p}_{2}-{p}_{1}\right)\pi {r}_{A}^{4}}{8\eta {l}_{A}}}{\frac{\left({p}_{2}-{p}_{1}\right)\pi {r}_{B}^{4}}{8\eta {l}_{B}}}={\left(\frac{{r}_{A}}{{r}_{B}}\right)}^{4}\hfill \\ \hfill {Q}_{B}& =\hfill & {\left(\frac{{r}_{B}}{{r}_{A}}\right)}^{4}{Q}_{A}\hfill \end{array}$

Cutting the radius in half decreases the flow rate to one-sixteenth the original flow rate.

## Flow and resistance as causes of pressure drops

Water pressure in homes is sometimes lower than normal during times of heavy use, such as hot summer days. The drop in pressure occurs in the water main before it reaches individual homes. Let us consider flow through the water main as illustrated in [link] . We can understand why the pressure ${p}_{1}$ to the home drops during times of heavy use by rearranging the equation for flow rate:

$\begin{array}{ccc}\hfill Q& =\hfill & \frac{{p}_{2}-{p}_{1}}{R}\hfill \\ \hfill {p}_{2}–{p}_{1}& =\hfill & RQ.\hfill \end{array}$

In this case, ${p}_{2}$ is the pressure at the water works and R is the resistance of the water main. During times of heavy use, the flow rate Q is large. This means that ${p}_{2}-{p}_{1}$ must also be large. Thus ${p}_{1}$ must decrease. It is correct to think of flow and resistance as causing the pressure to drop from ${p}_{2}$ to ${p}_{1}$ . The equation ${p}_{2}-{p}_{1}=RQ$ is valid for both laminar and turbulent flows.

Ok i got a question I'm not asking how gravity works. I would like to know why gravity works. like why is gravity the way it is. What is the true nature of gravity?
An automobile traveling with an initial velocity of 25m/s is accelerated to 35m/s in 6s,the wheel of the automobile is 80cm in diameter. find * The angular acceleration
what is the formula for pressure?
force/area
Kidus
force is newtom
Kidus
and area is meter squared
Kidus
so in SI units pressure is N/m^2
Kidus
In customary United States units pressure is lb/in^2. pound per square inch
Kidus
who is Newton?
scientist
Jeevan
a scientist
Peter
that discovered law of motion
Peter
ok
John
but who is Isaac newton?
John
a postmodernist would say that he did not discover them, he made them up and they're not actually a reality in itself, but a mere construct by which we decided to observe the word around us
elo
how?
Qhoshe
Besides his work on universal gravitation (gravity), Newton developed the 3 laws of motion which form the basic principles of modern physics. His discovery of calculus led the way to more powerful methods of solving mathematical problems. His work in optics included the study of white light and
Daniel
and the color spectrum
Daniel
what is a scalar quantity
scalar: are quantity have numerical value
muslim
is that a better way in defining scalar quantity
Peter
thanks
muslim
quantity that has magnitude but no direction
Peter
upward force and downward force lift
upward force and downward force on lift
hi
Etini
hi
elo
hy
Xander
Hello
Jux_dob
hi
Peter
Helo
Tobi
Daniel
what's the answer? I can't get it
what is the question again?
Sallieu
What's this conversation?
Zareen
what is catenation? and give examples
sununu
How many kilometres in 1 mile
Nessy
1.609km in 1mile
Faqir
what's the si unit of impulse
The Newton second (N•s)
Ethan
what is the s. I unit of current
Amphere(A)
imam
thanks man
Roland
u r welcome
imam
the velocity of a boat related to water is 3i+4j and that of water related to earth is i-3j. what is the velocity of the boat relative to earth.If unit vector i and j represent 1km/hour east and north respectively
what is head to tail rule?
kinza
what is the guess theorem
viva question and answer on practical youngs modulus by streching
send me vvi que
rupesh
a car can cover a distance of 522km on 36 Liter's of petrol, how far can it travel on 14 liter of petrol.
Isaac
yoo the ans is 193
Joseph
whats a two dimensional force
what are two dimensional force?
Where is Fourier Theorem?