<< Chapter < Page Chapter >> Page >
This figure has two parts, each of which shows two rough surfaces in close proximity to each other. In the first part, the normal force is small, so that the area of contact between the two surfaces is much smaller than their total area. In the second part, the normal force is large, so that the area of contact between the two surfaces has increased. As a result, the friction between the two surfaces in the second part is also greater than the friction in the first part.
Two rough surfaces in contact have a much smaller area of actual contact than their total area. When there is a greater normal force as a result of a greater applied force, the area of actual contact increases as does friction.

But the atomic-scale view promises to explain far more than the simpler features of friction. The mechanism for how heat is generated is now being determined. In other words, why do surfaces get warmer when rubbed? Essentially, atoms are linked with one another to form lattices. When surfaces rub, the surface atoms adhere and cause atomic lattices to vibrate—essentially creating sound waves that penetrate the material. The sound waves diminish with distance and their energy is converted into heat. Chemical reactions that are related to frictional wear can also occur between atoms and molecules on the surfaces. [link] shows how the tip of a probe drawn across another material is deformed by atomic-scale friction. The force needed to drag the tip can be measured and is found to be related to shear stress, which will be discussed later in this chapter. The variation in shear stress is remarkable (more than a factor of 10 12 size 12{"10" rSup { size 8{"12"} } } {} ) and difficult to predict theoretically, but shear stress is yielding a fundamental understanding of a large-scale phenomenon known since ancient times—friction.

This figure shows a molecular model of a probe that is dragged over the surface of a substrate. The substrate is represented by a rectangular prism, made up of a grid of small spheres, each sphere representing an atom. The probe, made up of a different grid of small spheres, is in the form of an inverted pyramid with a flattened peak. The pyramid is somewhat distorted because of friction.
The tip of a probe is deformed sideways by frictional force as the probe is dragged across a surface. Measurements of how the force varies for different materials are yielding fundamental insights into the atomic nature of friction.

Phet explorations: forces and motion

Explore the forces at work when you try to push a filing cabinet. Create an applied force and see the resulting friction force and total force acting on the cabinet. Charts show the forces, position, velocity, and acceleration vs. time. Draw a free-body diagram of all the forces (including gravitational and normal forces).

Forces and Motion

Section summary

  • Friction is a contact force between systems that opposes the motion or attempted motion between them. Simple friction is proportional to the normal force N size 12{N} {} pushing the systems together. (A normal force is always perpendicular to the contact surface between systems.) Friction depends on both of the materials involved. The magnitude of static friction f s size 12{f rSub { size 8{s} } } {} between systems stationary relative to one another is given by
    f s μ s N , size 12{f rSub { size 8{s} }<= μ rSub { size 8{s} } N} {}
    where μ s size 12{μ rSub { size 8{s} } } {} is the coefficient of static friction, which depends on both of the materials.
  • The kinetic friction force f k size 12{f rSub { size 8{k} } } {} between systems moving relative to one another is given by
    f k = μ k N , size 12{f rSub { size 8{k} } =μ rSub { size 8{k} } N} {}
    where μ k size 12{μ rSub { size 8{K} } } {} is the coefficient of kinetic friction, which also depends on both materials.

Conceptual questions

Define normal force. What is its relationship to friction when friction behaves simply?

Got questions? Get instant answers now!

The glue on a piece of tape can exert forces. Can these forces be a type of simple friction? Explain, considering especially that tape can stick to vertical walls and even to ceilings.

Got questions? Get instant answers now!

When you learn to drive, you discover that you need to let up slightly on the brake pedal as you come to a stop or the car will stop with a jerk. Explain this in terms of the relationship between static and kinetic friction.

Got questions? Get instant answers now!

Questions & Answers

fersnels biprism spectrometer how to determined
Bala Reply
how to study the hall effect to calculate the hall effect coefficient of the given semiconductor have to calculate the carrier density by carrier mobility.
Bala
what is the difference between atomic physics and momentum
Nana Reply
find the dimensional equation of work,power,and moment of a force show work?
Emmanuel Reply
What's sup guys
Peter
cul and you all
Okeh
cool you bro
Nana
so what is going on here
Nana
hello peeps
Joseph
Michelson Morley experiment
Riya Reply
how are you
Naveed
am good
Celine
you
Celine
hi
Bala
Calculate the final velocity attained, when a ball is given a velocity of 2.5m/s, acceleration of 0.67m/s² and reaches its point in 10s. Good luck!!!
Eklu Reply
2.68m/s
Doc
vf=vi+at vf=2.5+ 0.67*10 vf= 2.5 + 6.7 vf = 9.2
babar
s = vi t +1/2at sq s=58.5 s=v av X t vf= 9.2
babar
how 2.68
babar
v=u+at where v=final velocity u=initial velocity a=acceleration t=time
Eklu
express your height in Cm
Emmanuel Reply
my project is Sol gel process how to prepare this process pls tell me
Bala
the dimension of work and energy is ML2T2 find the unit of work and energy hence drive for work?
Emmanuel Reply
KgM2S2
Acquah
Two bodies P and Quarter each of mass 1000g. Moved in the same direction with speed of 10m/s and 20m/s respectively. Calculate the impulse of P and Q obeying newton's 3rd law of motion
Shimolla Reply
kk
Doc
definition for wave?
Doc Reply
A disturbance that travel from one medium to another and without causing permanent change to its displacement
Fagbenro
In physics, a wave is a disturbance that transfers energy through matter or space, with little or no associated mass transport (Mass transfer). ... There are two main types ofwaves: mechanical and electromagnetic. Mechanicalwaves propagate through a physical matter, whose substance is being deformed
Devansh
K
Manyo
thanks jare
Doc
Thanks
AMADI
Note: LINEAR MOMENTUM Linear momentum is defined as the product of a system’s mass multiplied by its velocity: size 12{p=mv} {}
AMADI
what is physic
zalmia Reply
please gave me answar
zalmia
Study of matter and energy
Fagbenro
physics is the science of matter and energy and their interactions
Acquah
physics is the technology behind air and matter
Doc
Okay
William
hi sir
Bala
how easy to understanding physics sir
Bala
Easy to learn
William
31. Calculate the initial (from rest) acceleration of a proton in a 5.00×106 N/C electric field (such as created by a research Van de Graaff). Explicitly show how you follow the steps in the Problem-Solving Strategy for electrostatics.
Catina Reply
A tennis ball is projected at an angle and attains a range of 78. if the velocity is 30metres per second, calculate the angle
Shimolla
what friction
Wisdom Reply
question on friction
Wisdom
the rubbing of one object or surface against another.
author
momentum is the product of mass and it's velocity.
Algayawi
what are bioelements?
Edina
Friction is a force that exist between two objects in contact. e.g. friction between road and car tires.
Eklu
With regards to a shielded cable, is there an induced current on the shield when the center conductor is carrying an AC Current? What is the formula?
John Reply
what is phenomena
remilekun Reply
no idea
Awoke
its phenomenon, an observable fact.
author
Mujy achy marks hasil krny k leay kesy tayari krni ho ge?plz help me I'M sooo woried
Imran Reply
konsi university m ho and konsa course h
Mohit
Practice Key Terms 5

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask