<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe how the sine and cosine functions relate to the concepts of circular motion
  • Describe the connection between simple harmonic motion and circular motion

An easy way to model SHM is by considering uniform circular motion . [link] shows one way of using this method. A peg (a cylinder of wood) is attached to a vertical disk, rotating with a constant angular frequency. [link] shows a side view of the disk and peg. If a lamp is placed above the disk and peg, the peg produces a shadow. Let the disk have a radius of r = A and define the position of the shadow that coincides with the center line of the disk to be x = 0.00 m . As the disk rotates at a constant rate, the shadow oscillates between x = + A and x = A . Now imagine a block on a spring beneath the floor as shown in [link] .

An illustration of the method discussed in the text for casting an oscillating shadow. A peg protrudes from a vertical rotating disk that is mounted vertically on a wall. A set of lights shine down, illuminating the peg from above. The shadow of the peg is shown below as seen at several times during the oscillation, forming a series of points along a line parallel to the wall. The distance from the center of the line to the location of the shadow is x.
SHM can be modeled as rotational motion by looking at the shadow of a peg on a wheel rotating at a constant angular frequency.
A comparison of the angular location of a peg on a rotating disk, the position of its shadow, and the position of a mass oscillating on a horizontal spring. In each figure, the peg is illuminated from above by a set of lights, casting a shadow on a horizontal line. The disk has radius r = A and rotates counterclockwise with angular velocity omega. The angular position of the peg, theta, is zero when the peg is directly to the right of the center of the disk. The spring is attached to a wall on the left and a mass on the right. The position of the mass and the shadow is x, where x=0 is directly below the center of the disk , x=-A is directly below the left edge of the disk, and x=+A is directly below the right edge of the disk. In figure a, t=0.0. The peg is directly to the right of the center of the disk. Its shadow and the mass are both at x = +A. In figure b, the peg is at angle theta equals omega t, in the first quadrant. Its shadow and the mass are both directly below the peg at what appears to be x = +A/2. The time is not specified. In figure c, t=T/4. The peg is directly above the center of the disk. Its angular position theta equals omega t. Its shadow and the mass are both at x =0. In figure d, the peg is at angle theta equals omega t, now in the second quadrant. Its shadow and the mass are both directly below the peg at what appears to be x = -A/2. The time is not specified.
Light shines down on the disk so that the peg makes a shadow. If the disk rotates at just the right angular frequency, the shadow follows the motion of the block on a spring. If there is no energy dissipated due to nonconservative forces, the block and the shadow will oscillate back and forth in unison. In this figure, four snapshots are taken at four different times. (a) The wheel starts at θ = 0 o and the shadow of the peg is at x = + A , representing the mass at position x = + A . (b) As the disk rotates through an angle θ = ω t , the shadow of the peg is between x = + A and x = 0 . (c) The disk continues to rotate until θ = 90 0 , at which the shadow follows the mass to x = 0 . (d) The disk continues to rotate, the shadow follows the position of the mass.

If the disk turns at the proper angular frequency, the shadow follows along with the block. The position of the shadow can be modeled with the equation

x ( t ) = A cos ( ω t ) .

Recall that the block attached to the spring does not move at a constant velocity. How often does the wheel have to turn to have the peg’s shadow always on the block? The disk must turn at a constant angular frequency equal to 2 π times the frequency of oscillation ( ω = 2 π f ) .

[link] shows the basic relationship between uniform circular motion and SHM. The peg lies at the tip of the radius, a distance A from the center of the disk. The x -axis is defined by a line drawn parallel to the ground, cutting the disk in half. The y -axis (not shown) is defined by a line perpendicular to the ground, cutting the disk into a left half and a right half. The center of the disk is the point ( x = 0 , y = 0 ) . The projection of the position of the peg onto the fixed x -axis gives the position of the shadow, which undergoes SHM analogous to the system of the block and spring. At the time shown in the figure, the projection has position x and moves to the left with velocity v . The tangential velocity of the peg around the circle equals v max of the block on the spring. The x -component of the velocity is equal to the velocity of the block on the spring.

A comparison of the angular location of a peg on a rotating disk, the position of its shadow, and the position of a mass oscillating on a horizontal spring. The disk has radius r = A and rotates counterclockwise with angular velocity omega. The angular position of the peg, theta, is zero when the peg is directly to the right of the center of the disk and is equal to omega t at the time shown. The linear velocity of the peg is shown as a vector tangent to the circle at the edge of the disk. It has magnitude v sub max which is equal to A omega. Its x component is a horizontal leftward vector – v sub max times sine omega t. The peg casts a shadow on a horizontal line. The spring is attached to a wall on the left and a mass on the right. The position of the mass and the shadow is x, where x=0 is directly below the center of the disk, x=-A is directly below the left edge of the disk, and x=+A is directly below the right edge of the disk. In the figure, the peg is in the first quadrant. Its shadow and the mass are both at a position x between 0 and plus A (it appears to be at x = A/2 in the figure.)
A peg moving on a circular path with a constant angular velocity ω is undergoing uniform circular motion. Its projection on the x -axis undergoes SHM. Also shown is the velocity of the peg around the circle, v max , and its projection, which is v . Note that these velocities form a similar triangle to the displacement triangle.

We can use [link] to analyze the velocity of the shadow as the disk rotates. The peg moves in a circle with a speed of v max = A ω . The shadow moves with a velocity equal to the component of the peg’s velocity that is parallel to the surface where the shadow is being produced:

v = v max sin ( ω t ) .

It follows that the acceleration is

a = a max cos ( ω t ) .

Check Your Understanding Identify an object that undergoes uniform circular motion. Describe how you could trace the SHM of this object.

A ketchup bottle sits on a lazy Susan in the center of the dinner table. You set it rotating in uniform circular motion. A set of lights shine on the bottle, producing a shadow on the wall.

Got questions? Get instant answers now!

Summary

  • A projection of uniform circular motion undergoes simple harmonic oscillation.
  • Consider a circle with a radius A , moving at a constant angular speed ω . A point on the edge of the circle moves at a constant tangential speed of v max = A ω . The projection of the radius onto the x -axis is x ( t ) = A cos ( ω t + ϕ ) , where ( ϕ ) is the phase shift. The x -component of the tangential velocity is v ( t ) = A ω sin ( ω t + ϕ ) .

Conceptual questions

Can this analogy of SHM to circular motion be carried out with an object oscillating on a spring vertically hung from the ceiling? Why or why not? If given the choice, would you prefer to use a sine function or a cosine function to model the motion?

Got questions? Get instant answers now!

If the maximum speed of the mass attached to a spring, oscillating on a frictionless table, was increased, what characteristics of the rotating disk would need to be changed?

The maximum speed is equal to v max = A ω and the angular frequency is independent of the amplitude, so the amplitude would be affected. The radius of the circle represents the amplitude of the circle, so make the amplitude larger.

Got questions? Get instant answers now!

Problems

The motion of a mass on a spring hung vertically, where the mass oscillates up and down, can also be modeled using the rotating disk. Instead of the lights being placed horizontally along the top and pointing down, place the lights vertically and have the lights shine on the side of the rotating disk. A shadow will be produced on a nearby wall, and will move up and down. Write the equations of motion for the shadow taking the position at t = 0.0 s to be y = 0.0 m with the mass moving in the positive y -direction.

Got questions? Get instant answers now!

(a) A novelty clock has a 0.0100-kg-mass object bouncing on a spring that has a force constant of 1.25 N/m. What is the maximum velocity of the object if the object bounces 3.00 cm above and below its equilibrium position? (b) How many joules of kinetic energy does the object have at its maximum velocity?

a. 0.335 m/s; b. 5.61 × 10 −4 J

Got questions? Get instant answers now!

Reciprocating motion uses the rotation of a motor to produce linear motion up and down or back and forth. This is how a reciprocating saw operates, as shown below.

A diagram of a motor, depicted as a disk rotating on its axis, causing a saw blade to move horizontally. At the bottom of the motor disk is a linkage that connects to the horizontal blade. The linkage can pivot at both ends. The blade is constrained to move horizontally by a horizontal gap in a guiding block.

If the motor rotates at 60 Hz and has a radius of 3.0 cm, estimate the maximum speed of the saw blade as it moves up and down. This design is known as a scotch yoke.

Got questions? Get instant answers now!

A student stands on the edge of a merry-go-round which rotates five times a minute and has a radius of two meters one evening as the sun is setting. The student produces a shadow on the nearby building. (a) Write an equation for the position of the shadow. (b) Write an equation for the velocity of the shadow.

a. x ( t ) = 2 m cos ( 0.52 s −1 t ) ; b. v ( t ) = ( −1.05 m/s ) sin ( 0.52 s −1 t )

Got questions? Get instant answers now!

Questions & Answers

is the eye the same like the camera
EDWIN Reply
I can't understand
Suraia
why is the "_" sign used for a wave to the right instead of to the left?
MUNGWA Reply
why classical mechanics is necessary for graduate students?
khyam Reply
classical mechanics?
Victor
principle of superposition?
Naveen Reply
principle of superposition allows us to find the electric field on a charge by finding the x and y components
Kidus
Two Masses,m and 2m,approach each along a path at right angles to each other .After collision,they stick together and move off at 2m/s at angle 37° to the original direction of the mass m. What where the initial speeds of the two particles
MB
2m & m initial velocity 1.8m/s & 4.8m/s respectively,apply conservation of linear momentum in two perpendicular directions.
Shubhrant
A body on circular orbit makes an angular displacement given by teta(t)=2(t)+5(t)+5.if time t is in seconds calculate the angular velocity at t=2s
MB
2+5+0=7sec differentiate above equation w.r.t time, as angular velocity is rate of change of angular displacement.
Shubhrant
Ok i got a question I'm not asking how gravity works. I would like to know why gravity works. like why is gravity the way it is. What is the true nature of gravity?
Daniel Reply
gravity pulls towards a mass...like every object is pulled towards earth
Ashok
An automobile traveling with an initial velocity of 25m/s is accelerated to 35m/s in 6s,the wheel of the automobile is 80cm in diameter. find * The angular acceleration
Goodness Reply
(10/6) ÷0.4=4.167 per sec
Shubhrant
what is the formula for pressure?
Goodness Reply
force/area
Kidus
force is newtom
Kidus
and area is meter squared
Kidus
so in SI units pressure is N/m^2
Kidus
In customary United States units pressure is lb/in^2. pound per square inch
Kidus
who is Newton?
John Reply
scientist
Jeevan
a scientist
Peter
that discovered law of motion
Peter
ok
John
but who is Isaac newton?
John
a postmodernist would say that he did not discover them, he made them up and they're not actually a reality in itself, but a mere construct by which we decided to observe the word around us
elo
how?
Qhoshe
Besides his work on universal gravitation (gravity), Newton developed the 3 laws of motion which form the basic principles of modern physics. His discovery of calculus led the way to more powerful methods of solving mathematical problems. His work in optics included the study of white light and
Daniel
and the color spectrum
Daniel
what is a scalar quantity
Peter Reply
scalar: are quantity have numerical value
muslim
is that a better way in defining scalar quantity
Peter
thanks
muslim
quantity that has magnitude but no direction
Peter
upward force and downward force lift
adegboye Reply
upward force and downward force on lift
adegboye
hi
Etini
hi
elo
hy
Xander
Hello
Jux_dob
hi
Peter
Helo
Tobi
Yes what about it?
Daniel
what's the answer? I can't get it
Rachel Reply
what is the question again?
Sallieu
What's this conversation?
Zareen
what is catenation? and give examples
sununu
How many kilometres in 1 mile
Nessy
1.609km in 1mile
Faqir
what's the si unit of impulse
Iguh Reply
The Newton second (N•s)
Ethan
what is the s. I unit of current
Roland Reply
Amphere(A)
imam
thanks man
Roland
u r welcome
imam
the velocity of a boat related to water is 3i+4j and that of water related to earth is i-3j. what is the velocity of the boat relative to earth.If unit vector i and j represent 1km/hour east and north respectively
Pallavi Reply
what is head to tail rule?
kinza Reply
Explain Head to tail rule?
kinza

Get the best University physics vol... course in your pocket!





Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask