# 2.4 Products of vectors  (Page 8/16)

 Page 9 / 16

Find the angles that vector $\stackrel{\to }{D}=\left(2.0\stackrel{^}{i}-4.0\stackrel{^}{j}+\stackrel{^}{k}\right)\text{m}$ makes with the x -, y -, and z - axes.

${\theta }_{i}=64.12\text{°},{\theta }_{j}=150.79\text{°},{\theta }_{k}=77.39\text{°}$

Show that the force vector $\stackrel{\to }{D}=\left(2.0\stackrel{^}{i}-4.0\stackrel{^}{j}+\stackrel{^}{k}\right)\text{N}$ is orthogonal to the force vector $\stackrel{\to }{G}=\left(3.0\stackrel{^}{i}+4.0\stackrel{^}{j}+10.0\stackrel{^}{k}\right)\text{N}$ .

Assuming the + x -axis is horizontal to the right for the vectors in the previous figure, find the following vector products: (a) $\stackrel{\to }{A}\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}\stackrel{\to }{C}$ , (b) $\stackrel{\to }{A}\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}\stackrel{\to }{F}$ , (c) $\stackrel{\to }{D}\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}\stackrel{\to }{C}$ , (d) $\stackrel{\to }{A}\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}\left(\stackrel{\to }{F}+2\stackrel{\to }{C}\right)$ , (e) $\stackrel{^}{i}\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}\stackrel{\to }{B}$ , (f) $\stackrel{^}{j}\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}\stackrel{\to }{B}$ , (g) $\left(3\stackrel{^}{i}-\stackrel{^}{j}\right)\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}\stackrel{\to }{B}$ , and (h) $\stackrel{^}{B}\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}\stackrel{\to }{B}$ .

a. $-119.98\stackrel{^}{k}$ , b. $-173.2\stackrel{^}{k}$ , c. $+93.69\stackrel{^}{k}$ , d. $-413.2\stackrel{^}{k}$ , e. $+39.93\stackrel{^}{k}$ , f. $-30.09\stackrel{^}{k}$ , g. $+149.9\stackrel{^}{k}$ , h. 0

Find the cross product $\stackrel{\to }{A}\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}\stackrel{\to }{C}$ for (a) $\stackrel{\to }{A}=2.0\stackrel{^}{i}-4.0\stackrel{^}{j}+\stackrel{^}{k}$ and $\stackrel{\to }{C}=3.0\stackrel{^}{i}+4.0\stackrel{^}{j}+10.0\stackrel{^}{k}$ , (b) $\stackrel{\to }{A}=3.0\stackrel{^}{i}+4.0\stackrel{^}{j}+10.0\stackrel{^}{k}$ and $\stackrel{\to }{C}=2.0\stackrel{^}{i}-4.0\stackrel{^}{j}+\stackrel{^}{k}$ , (c) $\stackrel{\to }{A}=-3.0\stackrel{^}{i}-4.0\stackrel{^}{j}$ and $\stackrel{\to }{C}=-3.0\stackrel{^}{i}+4.0\stackrel{^}{j}$ , and (d) $\stackrel{\to }{C}=-2.0\stackrel{^}{i}+3.0\stackrel{^}{j}+2.0\stackrel{^}{k}$ and $\stackrel{\to }{A}=-9.0\stackrel{^}{j}$ .

For the vectors in the earlier figure, find (a) $\left(\stackrel{\to }{A}\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}\stackrel{\to }{F}\right)·\stackrel{\to }{D}$ , (b) $\left(\stackrel{\to }{A}\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}\stackrel{\to }{F}\right)·\left(\stackrel{\to }{D}\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}\stackrel{\to }{B}\right)$ , and (c) $\left(\stackrel{\to }{A}·\stackrel{\to }{F}\right)\left(\stackrel{\to }{D}\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}\stackrel{\to }{B}\right)$ .

a. 0, b. 173,194, c. $+199,993\stackrel{^}{k}$

(a) If $\stackrel{\to }{A}\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}\stackrel{\to }{F}=\stackrel{\to }{B}\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}\stackrel{\to }{F}$ , can we conclude $\stackrel{\to }{A}=\stackrel{\to }{B}$ ? (b) If $\stackrel{\to }{A}·\stackrel{\to }{F}=\stackrel{\to }{B}·\stackrel{\to }{F}$ , can we conclude $\stackrel{\to }{A}=\stackrel{\to }{B}$ ? (c) If $F\stackrel{\to }{A}=\stackrel{\to }{B}F$ , can we conclude $\stackrel{\to }{A}=\stackrel{\to }{B}$ ? Why or why not?

You fly $32.0\phantom{\rule{0.2em}{0ex}}\text{km}$ in a straight line in still air in the direction $35.0\text{°}$ south of west. (a) Find the distances you would have to fly due south and then due west to arrive at the same point. (b) Find the distances you would have to fly first in a direction $45.0\text{°}$ south of west and then in a direction $45.0\text{°}$ west of north. Note these are the components of the displacement along a different set of axes—namely, the one rotated by $45\text{°}$ with respect to the axes in (a).

a. 18.4 km and 26.2 km, b. 31.5 km and 5.56 km

Rectangular coordinates of a point are given by (2, y ) and its polar coordinates are given by $\left(r,\pi \text{/}6\right)$ . Find y and r .

If the polar coordinates of a point are $\left(r,\phi \right)$ and its rectangular coordinates are $\left(x,y\right)$ , determine the polar coordinates of the following points: (a) (− x , y ), (b) (−2 x , −2 y ), and (c) (3 x , −3 y ).

a. $\left(r,\phi +\pi \text{/}2\right)$ , b. $\left(2r,\phi +2\pi \right)$ , (c) $\left(3r,\text{−}\phi \right)$

Vectors $\stackrel{\to }{A}$ and $\stackrel{\to }{B}$ have identical magnitudes of 5.0 units. Find the angle between them if $\stackrel{\to }{A}+\stackrel{\to }{B}=5\sqrt{2}\stackrel{^}{j}$ .

Starting at the island of Moi in an unknown archipelago, a fishing boat makes a round trip with two stops at the islands of Noi and Poi. It sails from Moi for 4.76 nautical miles (nmi) in a direction $37\text{°}$ north of east to Noi. From Noi, it sails $69\text{°}$ west of north to Poi. On its return leg from Poi, it sails $28\text{°}$ east of south. What distance does the boat sail between Noi and Poi? What distance does it sail between Moi and Poi? Express your answer both in nautical miles and in kilometers. Note: 1 nmi = 1852 m.

${d}_{\text{PM}}=33.12\phantom{\rule{0.2em}{0ex}}\text{nmi}=61.34\phantom{\rule{0.2em}{0ex}}\text{km},\phantom{\rule{0.4em}{0ex}}{d}_{\text{NP}}=35.47\phantom{\rule{0.2em}{0ex}}\text{nmi}=65.69\phantom{\rule{0.2em}{0ex}}\text{km}$

An air traffic controller notices two signals from two planes on the radar monitor. One plane is at altitude 800 m and in a 19.2-km horizontal distance to the tower in a direction $25\text{°}$ south of west. The second plane is at altitude 1100 m and its horizontal distance is 17.6 km and $20\text{°}$ south of west. What is the distance between these planes?

Show that when $\stackrel{\to }{A}+\stackrel{\to }{B}=\stackrel{\to }{C}$ , then ${C}^{2}={A}^{2}+{B}^{2}+2AB\phantom{\rule{0.2em}{0ex}}\text{cos}\phantom{\rule{0.2em}{0ex}}\phi$ , where $\phi$ is the angle between vectors $\stackrel{\to }{A}$ and $\stackrel{\to }{B}$ .

proof

Four force vectors each have the same magnitude f . What is the largest magnitude the resultant force vector may have when these forces are added? What is the smallest magnitude of the resultant? Make a graph of both situations.

a length of copper wire was measured to be 50m with an uncertainty of 1cm, the thickness of the wire was measured to be 1mm with an uncertainty of 0.01mm, using a micrometer screw gauge, calculate the of copper wire used
Mustapha
If centripetal force is directed towards the center,why do you feel that you're thrown away from the center as a car goes around a curve? Explain
Which kind of wave does wind form
calculate the distance you will travel if you mantain an average speed of 10N m/s for 40 second
hw to calculate the momentum of the 2000.0 elephant change hunter at a speed of 7.50 m/s
how many cm makes 1 inches
2.5
omwoyo
2.54cm=1inche
omwoyo
how do we convert from m/s to km/hr
When paddling a canoe upstream, it is wisest to travel as near to the shore as possible. When canoeing downstream, it may be best to stay near the middle. Explain why?
Explain why polarization does not occur in sound
one ship sailing east with a speed of 7.5m/s passes a certain point at 8am and a second ship sailing north at the same speed passed the same point at 9.30am at what distance are they closet together and what is the distance between them then
density of a subtance is given as 360g/cm,put it in it s.i unit form
if m2 is twice of m1. find the ration of kinetic energy in COM system to lab system of elastic collision
What is a volt equal to?
list and explain the 3 ways of charging a conductor
conduction convention rubbing
Asdesaw
formula of magnetic field
why polarization does not occur in sound
Integral of a vector
define surface integral of a vector?
Rahat

#### Get Jobilize Job Search Mobile App in your pocket Now! By By OpenStax By Brianna Beck By Brooke Delaney By Olivia D'Ambrogio By Kimberly Nichols By Anonymous User By Samuel Madden By Jazzycazz Jackson By LaToya Trowers