<< Chapter < Page Chapter >> Page >
Figure a is an electron micrograph showing a virus on the surface of a bacterial cell. The virus has a large head region, a thick neck and thin spider-like legs attached to the bacterium. Figure b is a drawing that labels the outside of the head as the capsid with the viral genome inside. The neck as the sheath and the legs as tail fibers.
A diagram of a large cell. The outside of the cell is a thin line labeled plasma membrane. A long projection outside of the plasma membrane is labeled flagellum. Shorter projections outside the membrane are labeled cilia. Just under the plasma membrane are lines labeled microtubules and microfilaments. The fluid inside the plasma membrane is labeled cytoplasm. In the cytoplasm are small dots labeled ribosomes. These dots are either floating in the cytoplasm or attached to a webbed membrane labeled rough endoplasmic reticulum. Some regions of the webbed membrane do not have dots; these regions of the membrane are called smooth endoplasmic reticulum. Other structures in the cytoplasm include an oval with a webbed line inside of it; this is labeled the mitochondrion. Spheres in the cytoplasm are labeled peroxisome and lysosome. A pancake stack of membranes is labeled golgi complex. Two short tubes are labeled centrosomes. A large sphere in the cell is labeled nucleus. The outer membrane of this sphere is the nuclear envelope. Holes in the nuclear envelope are called nuclear pores. A smaller sphere in the nucleus is labeled nucleolus.
Table of electron microscopes which use electron beams focused with magnets to produce an image. Magnification: 20 – 100,00× or more. Transmission electron microscopes (TEM) use electron means that pass through a specimen to visual small images; useful to observe small, thin specimens such as tissue sections and subcellular structures. The sample image (Ebola virus) shows a tube shaped into a letter d at one end. Scanning electron microscopes (SEM) use electron beams to visualize surfaces; useful to observe the three-dimensional surface details of specimens. The sample image (Campylobactor jejuni) shows thick three-dimensional spirals.
A diagram of a rod-shaped prokaryotic cell. The thick outer layer is called the capsule, inside of that is a thinner cell wall and inside of that is an even thinner plasma membrane. Inside of the plasma membrane is a fluid called the cytoplasm, little dots called ribosomes, small spheres called inclusions, a small loop of DNA called a plasmid, and a large folded loo of DNA called the nucleoid. Long projections start at the plasma membrane and extend out of the capsule; these are called flagella (singular: flagellum). A shorter projection is labeled pilus. And many very short projections are labeled fimbriae.
A drawing of the plasma membrane. The top of the diagram is labeled outside of cell, the bottom is labeled cytoplasm. Separating these two regions is the membrane which is made of mostly a phospholipid bilayer. Each phospholipid is drawn as a sphere with 2 tails. There are two layers of phospholipids making up the bilayer; each phospholipid layer has the sphere towards the outside of the bilayer and the two tails towards the inside of the bilayer. Embedded within the phospholipid bilayer are a variety of large proteins. Glycolipids have long carbohydrate chains (shown as a chain of hexagons) attached to a single phospholipid; the carbohydrates are always on the outside of the membrane. Glycoproteins have a long carbohydrate chain attached to a protein; the carbohydrates are on the outside of the membrane. The cytoskeleton is shown as a thin layer of line just under the inside of the phospholipid bilayer.
Eggs or gravid proplottidis from an infected individual are passed into the environment; this is the diagnostic stage. Cattle (T. saginata) and pigs (T. solium) become infected by ingesting vegetation contaminated by eggs or gravid proglottids. Oncospheres hatch, penetrating intestinal wall and circulate to musculature. The oncospheres develop into cysticerci in muscles and become infective. Humans are infected by ingesting raw or undercooked infected meat. The scolex attaches to intestine and adults are found in the small intestine.

Materials that reinforce key concepts

  • Learning Objectives. Every section begins with a set of clear and concise learning objectives that are closely aligned to the content and Review Questions.
  • Summary. The Summary distills the information in each section into a series of concise bullet points. Key Terms in the Summary are bold-faced for emphasis.
  • Key Terms. New vocabulary is bold-faced when first introduced in the text and followed by a definition in context. Definitions of key terms are also listed in the Glossary in ( Appendix E ).
  • Check Your Understanding questions. Each subsection of the text is punctuated by one or more comprehension-level questions. These questions encourage readers to make sure they understand what they have read before moving on to the next topic.
  • Review Questions. Each chapter has a robust set of review questions that assesses students’ mastery of the Learning Objectives. Questions are organized by format: multiple choice, matching, true/false, fill-in-the-blank, short answer, and critical thinking.

Additional resources

Student and instructor resources

We’ve compiled additional resources for both students and instructors, including Getting Started Guides, a test bank, and an instructor answer guide. Instructor resources require a verified instructor account, which can be requested on your openstax.org log-in. Take advantage of these resources to supplement your OpenStax book.

Partner resources

OpenStax Partners are our allies in the mission to make high-quality learning materials affordable and accessible to students and instructors everywhere. Their tools integrate seamlessly with our OpenStax titles at a low cost. To access the partner resources for your text, visit your book page on openstax.org.​

About the authors

Senior contributing authors

Nina Parker (Content Lead), Shenandoah University
Dr. Nina Parker received her BS and MS from the University of Michigan, and her PhD in Immunology from Ohio University. She joined Shenandoah University's Department of Biology in 1995 and serves as Associate Professor, teaching general microbiology, medical microbiology, immunology, and epidemiology to biology majors and allied health students. Prior to her academic career, Dr. Parker was trained as a Medical Technologist and received ASCP certification, experiences that drive her ongoing passion for training health professionals and those preparing for clinical laboratory work. Her areas of specialization include infectious disease, immunology, microbial pathogenesis, and medical microbiology. Dr. Parker is also deeply interested in the history of medicine and science, and pursues information about diseases often associated with regional epidemics in Virginia.

Mark Schneegurt (Lead Writer), Wichita State University
Dr. Mark A. Schneegurt is a Professor of Biological Sciences at Wichita State University and maintains joint appointments in Curriculum and Instruction and Biomedical Engineering. Dr. Schneegurt holds degrees from Rensselaer Polytechnic Institute and a Ph.D. from Brown University. He was a postdoctoral fellow at Eli Lilly and has taught and researched at Purdue University and the University of Notre Dame. His research focuses on applied and environmental microbiology, resulting in 70+ scientific publications and 150+ presentations.

Questions & Answers

what is fermentation example ?
Sonal Reply
is proceess in which an agent couses of an oganic substances breakdown into simpler substance,especially in aneorobic breakdown of suger into alcohol.
Okashat
is it better to study microbiology and then medicine it makes no difference to go directly to medicine?
Jessee Reply
Dray's mathdme cell wall konse color k hote he
Jinal Reply
what is dray's mathdme cell wall
Prabhat
I confused. please help me
Karen
just confused
Raj
l don't understand it please explain it for me.
Karen Reply
epitopes are present on the surface of
Rohit Reply
at the tip of variable region on the antibody...where antigen and antibody binding sites combine...
Fiza
The term that is used refer to moving microbes under a microscope are referred to as?
Lee Reply
Members of the genus Neisseria cause which of the folowing human diseases?
Farah Reply
genital infections
Kamaluddeen
gonorrhoea
sandip
gonorrhoea
Jessee
4. Which of the following specimens should not be refrigerated? a. Urine b. Urogenital swab
Zahraa Reply
urine
Muuse
urine
Agatha
Urine
Tean
urine
Yasser
Urine
Ebtehal
urine
anamika
urine
Puja
urine
Inemesit
urine
Samuel
Urine
Muhammad
Details about McConkey agar
Muhammad
urine
SK
urine
what is bacteria
anamika Reply
a member of large number of unicellular microorganism which have cell wall but lack of cell organelles an oranised nucleus including somewhat can cause disease
Sukhdeep
Bacteria are usually composed of one cell onl to that are neither plants nor animals, microscopic, that may cause diseases or may be beneficial(in gut)... it depends upon their weapons. Nearly all animal life is dependent on Bacteria for their survival
Fiza
thanks
anamika
what factor make bacteria colony large and how could we sterlise it in large scale
fatty
nutrient concentration temp gaseous conc ph ion or salt concentration mositure condition factors contribute to make large colony. by autoclaving we will sterilize bactetia
Sukhdeep
Colony is actually visible growth of Bacteria that is as a result of suitable environment for growth i.e optimal conditions for growth, temperature, moisture etc. there're many methods to get rid of bacteria. If We stop giving them optimal conditions for living Bacteria will die soon .
Fiza
what's the difference between an antigen and a pathogen?
Pathogens are organisms that cause disease in other organisms whereas Antigen is a part of a pathogen that triggers the immune response..
Rajat
so it is the antigen that dendritic cells present to the T cells and not the pathogen itself?
no no antigen are the west product or part of the pathogen. in such case bacteria it self fight with over immune response & in another case bacteria release antigens
vasava
& other antigen like pollan grain, dust particles etc.....
vasava
pathogen are microbes that can infect the body and causw illness....antigens are the part of pathogens that alert the body to an infection
Sukhdeep
antigen is a part of blood and pathogen is foreign particle which causes diseases
Yogyata
antigen could be non microorganism.... where as pathogen is mixroorganism
tadesse
Thanks
Karen
a pathogen is a disease causing organism while an antigen is a protein in the white blood cells which combats pathogens.
Jessee
what type of widal test
sobhit Reply
this test determine for typhoid in this test if H,O antigen are present that indicate the positive test bac. are salmonella typhy
vasava
what h.o denotes
Iqra
o: body of bacteria, h: flagellate
Explain Mould
Chinenye Reply
Explain mycoses and it's classification
Chinenye
why do we have hiccups?
Manisha Reply
shakey diaphragm
Curlisse
The antibody binding site is formed primarily by:
Asalla Reply
How many types of MICROORGANISMS do we have?
Hope Reply
Hello friends
Hope
microorganisms are divided into seven type Bacteria archaea protozoa algae fungi virus and multicellular animal parasites
Raj

Get the best Microbiology course in your pocket!





Source:  OpenStax, Microbiology. OpenStax CNX. Nov 01, 2016 Download for free at http://cnx.org/content/col12087/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Microbiology' conversation and receive update notifications?

Ask