<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Create and interpret graphs of potential energy
  • Explain the connection between stability and potential energy

Often, you can get a good deal of useful information about the dynamical behavior of a mechanical system just by interpreting a graph of its potential energy as a function of position, called a potential energy diagram    . This is most easily accomplished for a one-dimensional system, whose potential energy can be plotted in one two-dimensional graph—for example, U ( x ) versus x —on a piece of paper or a computer program. For systems whose motion is in more than one dimension, the motion needs to be studied in three-dimensional space. We will simplify our procedure for one-dimensional motion only.

First, let’s look at an object, freely falling vertically, near the surface of Earth, in the absence of air resistance. The mechanical energy of the object is conserved, E = K + U , and the potential energy, with respect to zero at ground level, is U ( y ) = m g y , which is a straight line through the origin with slope m g . In the graph shown in [link] , the x -axis is the height above the ground y and the y -axis is the object’s energy.

The energy, in units of Joules, is plotted as a function of height above the ground in meters. The graph of potential energy U is a straight red line through the origin, where y sub zero equals zero. The equation of the line is given as U of y equals m g y.  The graph of the total energy E which is equal to K plus U is a constant, which appears as a black horizontal line. The height above the ground where  the E and U graphs intersect is y sub max. The energy between the red U line and the horizontal axis us U sub A. The energy between the red U of y line and the black E line is K sub A.
The potential energy graph for an object in vertical free fall, with various quantities indicated.

The line at energy E represents the constant mechanical energy of the object, whereas the kinetic and potential energies, K A and U A , are indicated at a particular height y A . You can see how the total energy is divided between kinetic and potential energy as the object’s height changes. Since kinetic energy can never be negative, there is a maximum potential energy and a maximum height, which an object with the given total energy cannot exceed:

K = E U 0 , U E .

If we use the gravitational potential energy reference point of zero at y 0 , we can rewrite the gravitational potential energy U as mgy . Solving for y results in

y E / m g = y max .

We note in this expression that the quantity of the total energy divided by the weight ( mg ) is located at the maximum height of the particle, or y max . At the maximum height, the kinetic energy and the speed are zero, so if the object were initially traveling upward, its velocity would go through zero there, and y max would be a turning point in the motion. At ground level, y 0 = 0 , the potential energy is zero, and the kinetic energy and the speed are maximum:

U 0 = 0 = E K 0 , E = K 0 = 1 2 m v 0 2 , v 0 = ± 2 E / m .

The maximum speed ± v 0 gives the initial velocity necessary to reach y max , the maximum height, and v 0 represents the final velocity, after falling from y max . You can read all this information, and more, from the potential energy diagram we have shown.

Consider a mass-spring system on a frictionless, stationary, horizontal surface, so that gravity and the normal contact force do no work and can be ignored ( [link] ). This is like a one-dimensional system, whose mechanical energy E is a constant and whose potential energy, with respect to zero energy at zero displacement from the spring’s unstretched length, x = 0 , is U ( x ) = 1 2 k x 2 .

Figure a is an illustration of a glider between springs on a horizontal air track. Figure b is a graph of energy in Joules as a function of displacement from unstretched length in meters. The potential energy U of x is plotted as a red upward opening parabola. The function U of x is equal to one half k x squared. The equilibrium point is at the minimum of the parabola, where x sub zero equals zero. The total energy E which is equal to K plus U and is constant is plotted as a horizontal black line. The points where the total E line meets the potential U curve are labeled as turning points. One turning point is at minus x sub max, and the other is at plus x sub max.
(a) A glider between springs on an air track is an example of a horizontal mass-spring system. (b) The potential energy diagram for this system, with various quantities indicated.

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask