<< Chapter < Page Chapter >> Page >

Consider a person holding a mass on a rope, as shown in [link] . If the 5.00-kg mass in the figure is stationary, then its acceleration is zero and the net force is zero. The only external forces acting on the mass are its weight and the tension supplied by the rope. Thus,

F net = T w = 0 ,

where T and w are the magnitudes of the tension and weight, respectively, and their signs indicate direction, with up being positive. As we proved using Newton’s second law, the tension equals the weight of the supported mass:

T = w = m g .

Thus, for a 5.00-kg mass (neglecting the mass of the rope), we see that

T = m g = ( 5.00 kg ) ( 9.80 m/s 2 ) = 49.0 N .

If we cut the rope and insert a spring, the spring would extend a length corresponding to a force of 49.0 N, providing a direct observation and measure of the tension force in the rope.

Figure shows mass m hanging from a rope. Two arrows of equal length, both labeled T are shown along the rope, one pointing up and the other pointing down. An arrow labeled w points down. A free body diagram shows T pointing up and w pointing down.
When a perfectly flexible connector (one requiring no force to bend it) such as this rope transmits a force T , that force must be parallel to the length of the rope, as shown. By Newton’s third law, the rope pulls with equal force but in opposite directions on the hand and the supported mass (neglecting the weight of the rope). The rope is the medium that carries the equal and opposite forces between the two objects. The tension anywhere in the rope between the hand and the mass is equal. Once you have determined the tension in one location, you have determined the tension at all locations along the rope.

Flexible connectors are often used to transmit forces around corners, such as in a hospital traction system, a tendon, or a bicycle brake cable. If there is no friction, the tension transmission is undiminished; only its direction changes, and it is always parallel to the flexible connector, as shown in [link] .

Figure a shows the muscle structure of a human finger. Broad muscles at the base are labeled extensor muscles. These are attached to the extensor tendons. Tendons along the length of the finger are labeled flexor tendons. Arrows labeled T are shown from the upper part of the finger towards the base. Figure b shows a bicycle. Arrows labeled T are shown from the centre of the back wheel to the seat bar, from the seat bar to the handle bar and from the handle towards the back of the bicycle.
(a) Tendons in the finger carry force T from the muscles to other parts of the finger, usually changing the force’s direction but not its magnitude (the tendons are relatively friction free). (b) The brake cable on a bicycle carries the tension T from the brake lever on the handlebars to the brake mechanism. Again, the direction but not the magnitude of T is changed.

What is the tension in a tightrope?

Calculate the tension in the wire supporting the 70.0-kg tightrope walker shown in [link] .

Figure shows a man at the centre of a tightrope which is supported by two poles. The rope sags under his weight and makes an angle of 5 degrees with the horizontal at each pole. Arrows labeled TL and TR point roughly to the left and right respectively and are parallel to the rope. Arrow labeled w points straight down from the man. These three arrows are also shown in a free body diagram.
The weight of a tightrope walker causes a wire to sag by 5.0 ° . The system of interest is the point in the wire at which the tightrope walker is standing.

Strategy

As you can see in [link] , the wire is bent under the person’s weight. Thus, the tension on either side of the person has an upward component that can support his weight. As usual, forces are vectors represented pictorially by arrows that have the same direction as the forces and lengths proportional to their magnitudes. The system is the tightrope walker, and the only external forces acting on him are his weight w and the two tensions T L (left tension) and T R (right tension). It is reasonable to neglect the weight of the wire. The net external force is zero, because the system is static. We can use trigonometry to find the tensions. One conclusion is possible at the outset—we can see from [link] (b) that the magnitudes of the tensions T L and T R must be equal. We know this because there is no horizontal acceleration in the rope and the only forces acting to the left and right are T L and T R . Thus, the magnitude of those horizontal components of the forces must be equal so that they cancel each other out.

Questions & Answers

a non-uniform boom of a crane 15m long, weighs 2800nts, with its center of gravity at 40% of its lenght from the hingr support. the boom is attached to a hinge at the lower end. rhe boom, which mAKES A 60% ANGLE WITH THE HORIZONTAL IS SUPPORTED BY A HORIZONTAL GUY WIRE AT ITS UPPER END. IF A LOAD OF 5000Nts is hung at the upper end of the boom, find the tension in the guywire and the components of the reaction at the hinge.
dangly Reply
what is the centripetal force
Malok Reply
Of?
John
centripetal force of attraction that pulls a body that is traversing round the orbit of a circle toward the center of the circle. Fc = MV²/r
Sampson
centripetal force is the force of attraction that pulls a body that is traversing round the orbit of a circle toward the center of the circle. Fc = MV²/r
Sampson
I do believe the formula for centripetal force is F=MA or F=m(v^2/r)
John
I mean the formula is Fc= Mass multiplied by square of velocity all over the Radius of the circle
Sampson
Yes
John
The force is equal to the mass times the velocity squared divided by the radius
John
That's the current chapter I'm on in my engineering physics class
John
Centripetal force is a force of attraction which keeps an object round the orbit towards the center of a circle. Mathematically Fc=mv²/r
Adebileje
In Example, we calculated the final speed of a roller coaster that descended 20 m in height and had an initial speed of 5 m/s downhill. Suppose the roller coaster had had an initial speed of 5 m/s uphill instead, and it coasted uphill, stopped, and then rolled back down to a final point 20 m bel
tan Reply
A steel lift column in a service station is 4 meter long and .2 meter in diameter. Young's modulus for steel is 20 X 1010N/m2.  By how much does the column shrink when a 5000- kg truck is on it?
Andiswa Reply
what exactly is a transverse wave
Dharmee Reply
does newton's first law mean that we don't need gravity to be attracted
Dharmee Reply
no, it just means that a brick isn't gonna move unless something makes it move. if in the air, moves down because of gravity. if on floor, doesn't move unless something has it move, like a hand pushing the brick. first law is that an object will stay at rest or motion unless another force acts upon
Grant
yeah but once gravity has already been exerted .. i am saying that it need not be constantly exerted now according to newtons first law
Dharmee
gravity is constantly being exerted. gravity is the force of attractiveness between two objects. you and another person exert a force on each other but the reason you two don't come together is because earth's effect on both of you is much greater
Grant
maybe the reason we dont come together is our inertia only and not gravity
Dharmee
this is the definition of inertia: a property of matter by which it continues in its existing state of rest or uniform motion in a straight line, unless that state is changed by an external force.
Grant
the earth has a much higher affect on us force wise that me and you together on each other, that's why we don't attract, relatively speaking of course
Grant
quite clear explanation but i just want my mind to be open to any theory at all .. its possible that maybe gravity does not exist at all or even the opposite can be true .. i dont want a fixed state of mind thats all
Dharmee
why wouldn't gravity exist? gravity is just the attractive force between two objects, at least to my understanding.
Grant
earth moves in a circular motion so yes it does need a constant force for a circular motion but incase of objects on earth i feel maybe there is no force of attraction towards the centre and its our inertia forcing us to stay at a point as once gravity had acted on the object
Dharmee
why should it exist .. i mean its all an assumption and the evidences are empirical
Dharmee
We have equations to prove it and lies of evidence to support. we orbit because we have a velocity and the sun is pulling us. Gravity is a law, we know it exists.
Grant
yeah sure there are equations but they are based on observations and assumptions
Dharmee
g is obtained by a simple pendulum experiment ...
Dharmee
gravity is tested by dropping a rock...
Grant
and also there were so many newtonian laws proved wrong by einstein . jus saying that its a law doesnt mean it cant be wrong
Dharmee
pendulum is good for showing energy transfer, here is an article on the detection of gravitational waves: ***ligo.org/detections.php
Grant
yeah but g is calculated by pendulum oscillations ..
Dharmee
thats what .. einstein s fabric model explains that force of attraction by sun on earth but i am talking about force of attraction by earth on objects on earth
Dharmee
no... this is how gravity is calculated:F = G*((m sub 1*m sub 2)/r^2)
Grant
gravitational constant is obtained EXPERIMENTALLY
Dharmee
the G part
Dharmee
Calculate the time of one oscillation or the period (T) by dividing the total time by the number of oscillations you counted. Use your calculated (T) along with the exact length of the pendulum (L) in the above formula to find "g." This is your measured value for "g."
Dharmee
G is the universal gravitational constant. F is the gravity
Grant
search up the gravity equation
Grant
yeahh G is obtained experimentally
Dharmee
sure yes
Grant
thats what .. after all its EXPERIMENTALLY calculated so its empirical
Dharmee
yes... so where do we disagree?
Grant
its empirical whixh means it can be proved wrong
Dharmee
so cant just say why wouldnt gravity exists
Dharmee
the constant, sure but extremely unlikely it is wrong. gravity however exists, there are equations and loads of support surrounding the concept. unfortunately I don't have a high enough background in physics but have this discussion with a physicist
Grant
can u suggest a platform where i can?
Dharmee
stack overflow
Grant
stack exchange, physics section***
Grant
its an app?
Dharmee
there is! it is also a website as well
Grant
okayy
Dharmee
nice talking to you
Dharmee
***physics.stackexchange.com/
Grant
likewise :)
Grant
What is the percentage by massof oxygen in Al2(so4)3
Isiguzo Reply
molecular mass of Al2(SO4)3 = (27×2)+3{(32×1)+(16×4)} =54+3(32+64) =54+3×96 =54+288 =342 g/mol molecular mass of Oxygen=12×16 =192 g/mol % of Oxygen= (molecular mass of Oxygen/ molecular mass of the compound)×100% =(192/342)×100% =19200/342% =56.14%
Adebileje
A spring with 50g mass suspended from it,has its length extended by 7.8cm 1.1 determine the spring constant? 1.2 it is observed that the length of the spring decreases by 4.7cm,from its original length, when a toy is place on top of it. what is the mass of the toy?
Silindelo Reply
solution mass = 50g= 0.05kg force= 50 x 10= 500N extension= 7.8cm = 0.078m using the formula Force= Ke K = force/extension 500/.078 = 6410.25N/m
Sampson
1.2 Decrease in length= -4.7cm =-0.047m mass=? acceleration due to gravity= 10 force = K x e force= mass x acceleration m x a = K x e mass = K x e/acceleration = 6410.25 x 0.047/10 = 30.13kg
Sampson
1.1 6.28Nm-¹
Anita
1.2 0.03kg or 30g
Anita
I used g=9.8ms-²
Anita
you should explain how yoy got the answer Anita
Grant
ok
Anita
with the fomular F=mg I got the value for force because now the force acting on the spring is the weight of the object and also you have to convert from grams to kilograms and cm to meter
Anita
so the spring constant K=F/e where F is force and e is extension
Anita
mass=50g=50/1000 kg m=0.05kg extension=7.8 cm=7.8/100 e=0.078 m g=9.8 m/s² 1.1 F=ke k=F/e k=mg/e k=0.05×9.8/0.078 k=0.49/0.078 k=6.28 N/m 1.2 F=6.28e mg=6.28e m=6.28e/g e=4.7 cm =4.7/100 e=0.047 m=6.28×0.047/9.8 m=0.29516/9.8 m=0.0301 kg
Adebileje
In this first example why didn't we use P=P° + ¶hg where ¶ is density
Anita Reply
Density = force applied x area p=fA =p = mga, then a=h therefore substitute =p =mgh
Hlehle
Please correct me
Hlehle
sorry I had a little typo in my question
Anita
Density = m/v (mass/volume) simple as that
Augustine
Hlehle vilakazi how density is equal to force * area and you also wrote p= mgh which is machenical potential energy ? how ?
Manorama
what is wave
Alfred Reply
who can state the third equation of motion
Alfred
wave is a distrubance that travelled in medium from one point to another with carry energy .
Manorama
wave is a periodic disturbance that carries energy from one medium to another..
Augustine
what exactly is a transverse wave then?
Dharmee
two particles rotate in a rigid body then acceleration will be ?
kinza Reply
same acceleration for all particles because all prticles will be moving with same angular velocity.so at any time interval u find same acceleration of all the prticles
Zaheer
what is electromagnetism
David Reply
It is the study of the electromagnetic force, one of the four fundamental forces of nature. ... It includes the electric force, which pushes all charged particles, and the magnetic force, which only pushes moving charges.
Energy
what is units?
Subhajit Reply
units as in how
praise
units are measurements of quantities
Adebileje
What is th formular for force
Joseph Reply
F = m x a
Santos
State newton's second law of motion
Seth Reply
can u tell me I cant remember
Indigo
force is equal to mass times acceleration
Santos
The acceleration of a system is directly proportional to the and in the same direction as the external force acting on the system and inversely proportional to its mass that is f=ma
David
The rate of change of momentum of a body is directly proportional to the force exerted on that body.
Rani
Practice Key Terms 3

Get the best University physics vol... course in your pocket!





Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask