<< Chapter < Page Chapter >> Page >
a ( t ) = d d t v ( t ) .

Thus, similar to velocity being the derivative of the position function, instantaneous acceleration is the derivative of the velocity function. We can show this graphically in the same way as instantaneous velocity. In [link] , instantaneous acceleration at time t 0 is the slope of the tangent line to the velocity-versus-time graph at time t 0 . We see that average acceleration a = Δ v Δ t approaches instantaneous acceleration as Δ t approaches zero. Also in part (a) of the figure, we see that velocity has a maximum when its slope is zero. This time corresponds to the zero of the acceleration function. In part (b), instantaneous acceleration at the minimum velocity is shown, which is also zero, since the slope of the curve is zero there, too. Thus, for a given velocity function, the zeros of the acceleration function give either the minimum or the maximum velocity.

Graph A shows velocity plotted versus time. Velocity increases from t1 to t2 and t3. It reaches maximum at t0. It decreases to t4 and continues to decrease to t5 and t6. The slope of the tangent line at t0 is indicated as the instantaneous velocity. Graph B shows velocity plotted versus time. Velocity decreases from t1 to t2 and t3. It reaches minimum at t0. It increases to t4 and continues to increase to t5 and t6. The slope of the tangent line at t0 is indicated as the instantaneous velocity.
In a graph of velocity versus time, instantaneous acceleration is the slope of the tangent line. (a) Shown is average acceleration a = Δ v Δ t = v f v i t f t i between times Δ t = t 6 t 1 , Δ t = t 5 t 2 , and Δ t = t 4 t 3 . When Δ t 0 , the average acceleration approaches instantaneous acceleration at time t 0. In view (a), instantaneous acceleration is shown for the point on the velocity curve at maximum velocity. At this point, instantaneous acceleration is the slope of the tangent line, which is zero. At any other time, the slope of the tangent line—and thus instantaneous acceleration—would not be zero. (b) Same as (a) but shown for instantaneous acceleration at minimum velocity.

To illustrate this concept, let’s look at two examples. First, a simple example is shown using [link] (b), the velocity-versus-time graph of [link] , to find acceleration graphically. This graph is depicted in [link] (a), which is a straight line. The corresponding graph of acceleration versus time is found from the slope of velocity and is shown in [link] (b). In this example, the velocity function is a straight line with a constant slope, thus acceleration is a constant. In the next example, the velocity function is has a more complicated functional dependence on time.

Graph A shows velocity in meters per second plotted versus time in seconds. Graph is linear and has a negative constant slope. Graph B shows acceleration in meters per second square plotted versus time in seconds. Graph is linear and has a zero slope with the acceleration being equal to -6.
(a, b) The velocity-versus-time graph is linear and has a negative constant slope (a) that is equal to acceleration, shown in (b).

If we know the functional form of velocity, v ( t ), we can calculate instantaneous acceleration a ( t ) at any time point in the motion using [link] .

Calculating instantaneous acceleration

A particle is in motion and is accelerating. The functional form of the velocity is v ( t ) = 20 t 5 t 2 m/s .

  1. Find the functional form of the acceleration.
  2. Find the instantaneous velocity at t = 1, 2, 3, and 5 s.
  3. Find the instantaneous acceleration at t = 1, 2, 3, and 5 s.
  4. Interpret the results of (c) in terms of the directions of the acceleration and velocity vectors.

Strategy

We find the functional form of acceleration by taking the derivative of the velocity function. Then, we calculate the values of instantaneous velocity and acceleration from the given functions for each. For part (d), we need to compare the directions of velocity and acceleration at each time.

Questions & Answers

what is phylogeny
Odigie Reply
evolutionary history and relationship of an organism or group of organisms
AI-Robot
ok
Deng
what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask