<< Chapter < Page Chapter >> Page >

Oscillations about an equilibrium position

We have just considered the energy of SHM as a function of time. Another interesting view of the simple harmonic oscillator is to consider the energy as a function of position. [link] shows a graph of the energy versus position of a system undergoing SHM.

Graph of energy E in Joules on the vertical axis versus position x in meters on the horizontal axis. The horizontal axis had x=0 labeled as the equilibrium position with F=0. Positions x=-A and x=+A are labeled as turning points. A concave down parabola in red, labeled as K, has its maximum value of E=E total at x=0 and is zero at x=-A and x=+A. A horizontal green line at a constant E value of E total is labeled as E total. A concave up parabola in blue, labeled as U, intersects the green line with a value of E=E total at x=-A and x=+A and is zero at x=0. The region of the graph to the left of x=0 is labeled with a red arrow pointing to the right and the equation F equals minus the derivative of U with respect to x. The region of the graph to the right of x=0 is labeled with a red arrow pointing to the left and the equation F equals minus the derivative of U with respect to x.
A graph of the kinetic energy (red), potential energy (blue), and total energy (green) of a simple harmonic oscillator. The force is equal to F = d U d x . The equilibrium position is shown as a black dot and is the point where the force is equal to zero. The force is positive when x < 0 , negative when x > 0 , and equal to zero when x = 0 .

The potential energy curve in [link] resembles a bowl. When a marble is placed in a bowl, it settles to the equilibrium position at the lowest point of the bowl ( x = 0 ) . This happens because a restoring force    points toward the equilibrium point. This equilibrium point is sometimes referred to as a fixed point . When the marble is disturbed to a different position ( x = + A ) , the marble oscillates around the equilibrium position. Looking back at the graph of potential energy, the force can be found by looking at the slope of the potential energy graph ( F = d U d x ) . Since the force on either side of the fixed point points back toward the equilibrium point, the equilibrium point is called a stable equilibrium point    . The points x = A and x = A are called the turning points . (See Potential Energy and Conservation of Energy .)

Stability is an important concept. If an equilibrium point is stable, a slight disturbance of an object that is initially at the stable equilibrium point will cause the object to oscillate around that point. The stable equilibrium point occurs because the force on either side is directed toward it. For an unstable equilibrium point, if the object is disturbed slightly, it does not return to the equilibrium point.

Consider the marble in the bowl example. If the bowl is right-side up, the marble, if disturbed slightly, will oscillate around the stable equilibrium point. If the bowl is turned upside down, the marble can be balanced on the top, at the equilibrium point where the net force is zero. However, if the marble is disturbed slightly, it will not return to the equilibrium point, but will instead roll off the bowl. The reason is that the force on either side of the equilibrium point is directed away from that point. This point is an unstable equilibrium point.

[link] shows three conditions. The first is a stable equilibrium point (a), the second is an unstable equilibrium point (b), and the last is also an unstable equilibrium point (c), because the force on only one side points toward the equilibrium point.

Three illustrations of a ball on a surface. In figure a, stable equilibrium point, the ball is inside a concave-up surface, at the bottom. A filled circle under the surface, below the ball, has two horizontal arrows labeled as F pointing toward it from either side. Gray arrows tangent to the surface are shown inside the surface, pointing down the slope, toward the ball’s position. In figure b, unstable equilibrium point, the ball is on top of a concave-down surface, at the top. An empty circle under the surface, below the ball, has two horizontal arrows labeled as F pointing away it from either side. Gray arrows tangent to the surface are shown inside the surface, pointing down the slope, away from the ball’s position. In figure c, unstable equilibrium point, the ball is on the inflection point of a surface. A half-filled circle under the surface, below the ball, has two horizontal arrows labeled as F, one on either side of the circle, both pointing to the left. Gray arrows tangent to the surface are shown inside the surface, pointing down the slope, one toward the ball and the other away from it.
Examples of equilibrium points. (a) Stable equilibrium point; (b) unstable equilibrium point; (c) unstable equilibrium point (sometimes referred to as a half-stable equilibrium point).

The process of determining whether an equilibrium point is stable or unstable can be formalized. Consider the potential energy curves shown in [link] . The force can be found by analyzing the slope of the graph. The force is F = d U d x . In (a), the fixed point is at x = 0.00 m . When x < 0.00 m, the force is positive. When x > 0.00 m, the force is negative. This is a stable point. In (b), the fixed point is at x = 0.00 m . When x < 0.00 m, the force is negative. When x > 0.00 m, the force is also negative. This is an unstable point.

Questions & Answers

who is Newton?
John Reply
scientist
Jeevan
a scientist
Peter
that discovered law of motion
Peter
ok
John
but who is Isaac newton?
John
a postmodernist would say that he did not discover them, he made them up and they're not actually a reality in itself, but a mere construct by which we decided to observe the word around us
elo
how?
Qhoshe
what is a scalar quantity
Peter Reply
scalar: are quantity have numerical value
muslim
is that a better way in defining scalar quantity
Peter
thanks
muslim
upward force and downward force lift
adegboye Reply
upward force and downward force on lift
adegboye
hi
Etini
hi
elo
hy
Xander
Hello
Jux_dob
hi
Peter
Helo
Tobi
what's the answer? I can't get it
Rachel Reply
what is the question again?
Sallieu
What's this conversation?
Zareen
what is catenation? and give examples
sununu
what's the si unit of impulse
Iguh Reply
The Newton second (N•s)
Ethan
what is the s. I unit of current
Roland Reply
Amphere(A)
imam
thanks man
Roland
u r welcome
imam
the velocity of a boat related to water is 3i+4j and that of water related to earth is i-3j. what is the velocity of the boat relative to earth.If unit vector i and j represent 1km/hour east and north respectively
Pallavi Reply
what is head to tail rule?
kinza Reply
Explain Head to tail rule?
kinza
what is the guess theorem
Monu Reply
viva question and answer on practical youngs modulus by streching
Akash Reply
send me vvi que
rupesh
a car can cover a distance of 522km on 36 Liter's of petrol, how far can it travel on 14 liter of petrol.
Isaac
yoo the ans is 193
Joseph
whats a two dimensional force
Jimoh Reply
what are two dimensional force?
Ahmad
Where is Fourier Theorem?
Atul Reply
what is Boyle's law
Amoo Reply
Boyle's law state that the volume of a given mass of gas is inversely proportion to its pressure provided that temperature remains constant
Abe
how do I turn off push notifications on this crap app?
Huntergirl
what is the meaning of in.
CHUKWUMA Reply
In means natural logarithm
Elom
is dea graph for cancer caliper experiment using glass block?
Bako
identity of vectors?
Choudhry Reply
Practice Key Terms 3

Get the best University physics vol... course in your pocket!





Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask