<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the energy conservation of the system of a mass and a spring
  • Explain the concepts of stable and unstable equilibrium points

To produce a deformation in an object, we must do work. That is, whether you pluck a guitar string or compress a car’s shock absorber, a force must be exerted through a distance. If the only result is deformation, and no work goes into thermal, sound, or kinetic energy, then all the work is initially stored in the deformed object as some form of potential energy.

Consider the example of a block attached to a spring on a frictionless table, oscillating in SHM. The force of the spring is a conservative force (which you studied in the chapter on potential energy and conservation of energy), and we can define a potential energy for it. This potential energy is the energy stored in the spring when the spring is extended or compressed. In this case, the block oscillates in one dimension with the force of the spring acting parallel to the motion:

W = x i x f F x d x = x i x f k x d x = [ 1 2 k x 2 ] x i x f = [ 1 2 k x f 2 1 2 k x i 2 ] = [ U f U i ] = Δ U .

When considering the energy stored in a spring, the equilibrium position, marked as x i = 0.00 m, is the position at which the energy stored in the spring is equal to zero. When the spring is stretched or compressed a distance x , the potential energy stored in the spring is

U = 1 2 k x 2 .

Energy and the simple harmonic oscillator

To study the energy of a simple harmonic oscillator, we need to consider all the forms of energy. Consider the example of a block attached to a spring, placed on a frictionless surface, oscillating in SHM. The potential energy stored in the deformation of the spring is

U = 1 2 k x 2 .

In a simple harmonic oscillator    , the energy oscillates between kinetic energy of the mass K = 1 2 m v 2 and potential energy U = 1 2 k x 2 stored in the spring. In the SHM of the mass and spring system, there are no dissipative forces, so the total energy is the sum of the potential energy and kinetic energy. In this section, we consider the conservation of energy of the system. The concepts examined are valid for all simple harmonic oscillators, including those where the gravitational force plays a role.

Consider [link] , which shows an oscillating block attached to a spring. In the case of undamped SHM, the energy oscillates back and forth between kinetic and potential, going completely from one form of energy to the other as the system oscillates. So for the simple example of an object on a frictionless surface attached to a spring, the motion starts with all of the energy stored in the spring as elastic potential energy    . As the object starts to move, the elastic potential energy is converted into kinetic energy, becoming entirely kinetic energy at the equilibrium position. The energy is then converted back into elastic potential energy by the spring as it is stretched or compressed. The velocity becomes zero when the kinetic energy is completely converted, and this cycle then repeats. Understanding the conservation of energy in these cycles will provide extra insight here and in later applications of SHM, such as alternating circuits.

Questions & Answers

A spring with 50g mass suspended from it,has its length extended by 7.8cm 1.1 determine the spring constant? 1.2 it is observed that the length of the spring decreases by 4.7cm,from its original length, when a toy is place on top of it. what is the mass of the toy?
Silindelo Reply
solution mass = 50g= 0.05kg force= 50 x 10= 500N extension= 7.8cm = 0.078m using the formula Force= Ke K = force/extension 500/.078 = 6410.25N/m
1.2 Decrease in length= -4.7cm =-0.047m mass=? acceleration due to gravity= 10 force = K x e force= mass x acceleration m x a = K x e mass = K x e/acceleration = 6410.25 x 0.047/10 = 30.13kg
1.1 6.28Nm-¹
1.2 0.03kg or 30g
I used g=9.8ms-²
you should explain how yoy got the answer Anita
with the fomular F=mg I got the value for force because now the force acting on the spring is the weight of the object and also you have to convert from grams to kilograms and cm to meter
so the spring constant K=F/e where F is force and e is extension
In this first example why didn't we use P=P° + ¶hg where ¶ is density
Anita Reply
Density = force applied x area p=fA =p = mga, then a=h therefore substitute =p =mgh
Please correct me
sorry I had a little typo in my question
Density = m/v (mass/volume) simple as that
Hlehle vilakazi how density is equal to force * area and you also wrote p= mgh which is machenical potential energy ? how ?
what is wave
Alfred Reply
who can state the third equation of motion
wave is a distrubance that travelled in medium from one point to another with carry energy .
wave is a periodic disturbance that carries energy from one medium to another..
two particles rotate in a rigid body then acceleration will be ?
kinza Reply
same acceleration for all particles because all prticles will be moving with same angular velocity.so at any time interval u find same acceleration of all the prticles
what is electromagnetism
David Reply
It is the study of the electromagnetic force, one of the four fundamental forces of nature. ... It includes the electric force, which pushes all charged particles, and the magnetic force, which only pushes moving charges.
what is units?
Subhajit Reply
units as in how
What is th formular for force
Joseph Reply
F = m x a
State newton's second law of motion
Seth Reply
can u tell me I cant remember
force is equal to mass times acceleration
The acceleration of a system is directly proportional to the and in the same direction as the external force acting on the system and inversely proportional to its mass that is f=ma
The uniform seesaw shown below is balanced on a fulcrum located 3.0 m from the left end. The smaller boy on the right has a mass of 40 kg and the bigger boy on the left has a mass 80 kg. What is the mass of the board?
Asad Reply
Consider a wave produced on a stretched spring by holding one end and shaking it up and down. Does the wavelength depend on the distance you move your hand up and down?
Sohail Reply
no, only the frequency and the material of the spring
how to read physics ncert?
beat line read important. line under line
how can one calculate the value of a given quantity
Helen Reply
To determine the exact value of a percent of a given quantity we need to express the given percent as fraction and multiply it by the given number.
briefly discuss rocket in physics
Ibrahim Reply
ok let's discuss
What is physics
Nura Reply
physics is the study of natural phenomena with concern with matter and energy and relationships between them
a potential difference of 10.0v is connected across a 1.0AuF in an LC circuit. calculate the inductance of the inductor that should be connected to the capacitor for the circuit to oscillate at 1125Hza potential difference of 10.0v is connected across a 1.0AuF in an LC circuit. calculate the inducta
Royalty Reply
L= 0.002H
how did you get it?
is the magnetic field of earth changing
tibebeab Reply
what is thought to be the energy density of multiverse and is the space between universes really space
can you explain it
Practice Key Terms 3

Get the best University physics vol... course in your pocket!

Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?