<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the energy conservation of the system of a mass and a spring
  • Explain the concepts of stable and unstable equilibrium points

To produce a deformation in an object, we must do work. That is, whether you pluck a guitar string or compress a car’s shock absorber, a force must be exerted through a distance. If the only result is deformation, and no work goes into thermal, sound, or kinetic energy, then all the work is initially stored in the deformed object as some form of potential energy.

Consider the example of a block attached to a spring on a frictionless table, oscillating in SHM. The force of the spring is a conservative force (which you studied in the chapter on potential energy and conservation of energy), and we can define a potential energy for it. This potential energy is the energy stored in the spring when the spring is extended or compressed. In this case, the block oscillates in one dimension with the force of the spring acting parallel to the motion:

W = x i x f F x d x = x i x f k x d x = [ 1 2 k x 2 ] x i x f = [ 1 2 k x f 2 1 2 k x i 2 ] = [ U f U i ] = Δ U .

When considering the energy stored in a spring, the equilibrium position, marked as x i = 0.00 m, is the position at which the energy stored in the spring is equal to zero. When the spring is stretched or compressed a distance x , the potential energy stored in the spring is

U = 1 2 k x 2 .

Energy and the simple harmonic oscillator

To study the energy of a simple harmonic oscillator, we need to consider all the forms of energy. Consider the example of a block attached to a spring, placed on a frictionless surface, oscillating in SHM. The potential energy stored in the deformation of the spring is

U = 1 2 k x 2 .

In a simple harmonic oscillator    , the energy oscillates between kinetic energy of the mass K = 1 2 m v 2 and potential energy U = 1 2 k x 2 stored in the spring. In the SHM of the mass and spring system, there are no dissipative forces, so the total energy is the sum of the potential energy and kinetic energy. In this section, we consider the conservation of energy of the system. The concepts examined are valid for all simple harmonic oscillators, including those where the gravitational force plays a role.

Consider [link] , which shows an oscillating block attached to a spring. In the case of undamped SHM, the energy oscillates back and forth between kinetic and potential, going completely from one form of energy to the other as the system oscillates. So for the simple example of an object on a frictionless surface attached to a spring, the motion starts with all of the energy stored in the spring as elastic potential energy    . As the object starts to move, the elastic potential energy is converted into kinetic energy, becoming entirely kinetic energy at the equilibrium position. The energy is then converted back into elastic potential energy by the spring as it is stretched or compressed. The velocity becomes zero when the kinetic energy is completely converted, and this cycle then repeats. Understanding the conservation of energy in these cycles will provide extra insight here and in later applications of SHM, such as alternating circuits.

Questions & Answers

what is a wave?
show that coefficient of friction of solid block inclined at an angle is equivalent to trignometric tangent of angle
thanks for that definition.
Dodou Reply
Hi everyone please can dere be motion without force?
whats is schrodinger equation
l went spiral spring
what is position?
Adhar Reply
position is simply where you are or where you were
position is the location of an object with respect to a two or three dimensional axes or space.
Can dere be motion without force?
what is the law of homogeinity?
auson Reply
two electric lines of force never interested each other. why?
Sujit Reply
proof that for BBC lattice structure 4r\root 5 and find Apf for the BBC structure
Eric Reply
what is physics?
Abdulaziz Reply
physics is deine as the specific measrument of of volume, area,nd distances...
if a string of 2m is suspended an an extended 3m elasticity is been applied.... is hooks law obeyed?
if a string of 2m is suspended an an extended 3m elasticity is been applied.... is hooks law obeyed?
proof that for a BBC lattice structure a= 4r/ root 5 find the APF for the BBC structure
if a string of 2m is suspended an an extended 3m elasticity is been applied.... is hooks law obeyed?
Enyia Reply
tell me conceptual quetions of mechanics
Syeda Reply
I want to solve a physical question
a displacement vector has a magnitude of 1.62km and point due north . another displacement vector B has a magnitude of 2.48 km and points due east.determine the magnitude and direction of (a) a+ b and (b) a_ b
Kou Reply
use Pythogorous
A student opens a 12kgs door by applying a constant force of 40N at a perpendicular distance of 0.9m from the hinges. if the door is 2.0m high and 1.0m wide determine the magnitude of the angular acceleration of the door. ( assume that the door rotates freely on its hinges.) please assist me to d
what is conditions met to produce shm
Enocy Reply
what is shm
Why is Maxwell saying that light is an electromagnetic wave?
1st condition; It(th e BBC's system) must have some inertia which will enable it to possess Kinetic energy 2. must be able to store potential energy
I meant "the system" not the BBC'S....."
what a answer bro
kindly tell us the name of your university
GUlam Ishaq Khan INSTITUTE of engineering science
Department of Environment Ionian University Zante Greece
why light wave travel faster than sounds
ALI Reply
Why light travel faster than sounds?
Light travel faster than sound because it does not need any medium to travel through.
when an aeroplane flies....why it does not fall on the earth?
As an aeroplane moves, it hits a wind,we have the wind flowing at the upper and lower zone of the aeroplane, the one that is moving on the upper zone moves at a greater speed than that of the lower zone, this creates a low pressure on the upper zone and a greater pressure at the lower zone.
which thing of aeroplane moves it upward?
good question
about force
am pleased to join the group
It a privilege to be here
Light speed is more than sound speed. C=3×10*8m/s V=320-340 m/s
A body of mass 2kg slides down a rough plane inclined to horizontal at 30degrees. find the energy that is wasted as a result of friction if the co-efficient of kinetic f
official Reply
ten applications of Newton's second law of motion
Alale Reply
Calculate the volume at S.T.P of a gas whose volume at -5° and 746 mmHg
Mlungisi Reply
Practice Key Terms 3

Get the best University physics vol... course in your pocket!

Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?