# 14.6 Bernoulli’s equation  (Page 6/8)

 Page 6 / 8

David rolled down the window on his car while driving on the freeway. An empty plastic bag on the floor promptly flew out the window. Explain why.

Based on Bernoulli’s equation, what are three forms of energy in a fluid? (Note that these forms are conservative, unlike heat transfer and other dissipative forms not included in Bernoulli’s equation.)

Potential energy due to position, kinetic energy due to velocity, and the work done by a pressure difference.

The old rubber boot shown below has two leaks. To what maximum height can the water squirt from Leak 1? How does the velocity of water emerging from Leak 2 differ from that of Leak 1? Explain your responses in terms of energy.

Water pressure inside a hose nozzle can be less than atmospheric pressure due to the Bernoulli effect. Explain in terms of energy how the water can emerge from the nozzle against the opposing atmospheric pressure.

The water has kinetic energy due to its motion. This energy can be converted into work against the difference in pressure.

## Problems

Verify that pressure has units of energy per unit volume.

$\begin{array}{}\\ \\ \hfill F& =\hfill & pA⇒p=\frac{F}{A},\hfill \\ \hfill \left[p\right]& =\hfill & {\text{N/m}}^{2}=\text{N}·{\text{m/m}}^{3}={\text{J/m}}^{3}=\text{energy/volume}\hfill \end{array}$

Suppose you have a wind speed gauge like the pitot tube shown in [link] . By what factor must wind speed increase to double the value of h in the manometer? Is this independent of the moving fluid and the fluid in the manometer?

If the pressure reading of your pitot tube is 15.0 mm Hg at a speed of 200 km/h, what will it be at 700 km/h at the same altitude?

−135 mm Hg

Every few years, winds in Boulder, Colorado, attain sustained speeds of 45.0 m/s (about 100 mph) when the jet stream descends during early spring. Approximately what is the force due to the Bernoulli equation on a roof having an area of $220{\text{m}}^{2}$ ? Typical air density in Boulder is $1.14{\text{kg/m}}^{3}$ , and the corresponding atmospheric pressure is $8.89\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{4}{\text{N/m}}^{2}$ . (Bernoulli’s principle as stated in the text assumes laminar flow. Using the principle here produces only an approximate result, because there is significant turbulence.)

What is the pressure drop due to the Bernoulli Effect as water goes into a 3.00-cm-diameter nozzle from a 9.00-cm-diameter fire hose while carrying a flow of 40.0 L/s? (b) To what maximum height above the nozzle can this water rise? (The actual height will be significantly smaller due to air resistance.)

a. $1.58\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{6}\phantom{\rule{0.2em}{0ex}}{\text{N/m}}^{2}$ ; b. 163 m

(a) Using Bernoulli’s equation, show that the measured fluid speed v for a pitot tube, like the one in [link] (b), is given by $v={\left(\frac{2{\rho }^{\prime }gh}{\rho }\right)}^{1\text{/}2}$ , where h is the height of the manometer fluid, ${\rho }^{\prime }$ is the density of the manometer fluid, $\rho$ is the density of the moving fluid, and g is the acceleration due to gravity. (Note that v is indeed proportional to the square root of h , as stated in the text.) (b) Calculate v for moving air if a mercury manometer’s h is 0.200 m.

A container of water has a cross-sectional area of $A=0.1\phantom{\rule{0.2em}{0ex}}{\text{m}}^{2}$ . A piston sits on top of the water (see the following figure). There is a spout located 0.15 m from the bottom of the tank, open to the atmosphere, and a stream of water exits the spout. The cross sectional area of the spout is ${A}_{\text{s}}=7.0\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-4}{\text{m}}^{2}$ . (a) What is the velocity of the water as it leaves the spout? (b) If the opening of the spout is located 1.5 m above the ground, how far from the spout does the water hit the floor? Ignore all friction and dissipative forces.

a. ${v}_{2}=3.28\frac{\text{m}}{\text{s}}$ ;
b. $t=0.55\phantom{\rule{0.2em}{0ex}}\text{s}$
$x=vt=1.81\phantom{\rule{0.2em}{0ex}}\text{m}$

A fluid of a constant density flows through a reduction in a pipe. Find an equation for the change in pressure, in terms of ${v}_{1},{A}_{1},{A}_{2}$ , and the density.

#### Questions & Answers

What is a volt equal to?
list and explain the 3 ways of charging a conductor
conduction convention rubbing
Asdesaw
formula of magnetic field
Integral of a vector
define surface integral of a vector?
Rahat
the number of degree freedom of a rigid body in2-dimantion is:
1
Nathan
A block (A) of weight 5 kN is to be raised by means of a 20° wedge (B) by the application of a horizontal force (P) as shown in Fig.1. The block A is constrained to move vertically by the application of a horizontal force (S). Find the magnitude of the forces F and S, when the coefficient of fricti
Danilo
A body receives impulses of 24Ns and 35Ns inclined 55 degree to each other. calculate the total impulse
A body receives impulses of 24Ns and 35Ns inclined 55 degree to each other. calculate the total impulse
Previous
twenty four square plus thirty-five square minus to multiple thirty five twenty four and equal answer number square Via this equation defined Total Total impulse
Cemal
why simple pendulum do not vibrate indefinitely?
Zirmal
define integral vector
Rahat
what is matar
define surface integral vector?
Rahat
The uniform boom shown below weighs 500 N, and the object hanging from its right end weighs 400 N. The boom is supported by a light cable and by a hinge at the wall. Calculate the tension in the cable and the force on the hinge on the boom. Does the force on the hinge act along the boom?
A 11.0-m boom, AB , of a crane lifting a 3000-kg load is shown below. The center of mass of the boom is at its geometric center, and the mass of the boom is 800 kg. For the position shown, calculate tension T in the cable and the force at the axle A .
Jave
what is the S.I unit of coefficient of viscosity
Derived the formula of Newton's law of universal gravitation Fg=G(M1M2)/R2
hi
Asdesaw
yes
Cemal
a non-uniform boom of a crane 15m long, weighs 2800nts, with its center of gravity at 40% of its lenght from the hingr support. the boom is attached to a hinge at the lower end. rhe boom, which mAKES A 60% ANGLE WITH THE HORIZONTAL IS SUPPORTED BY A HORIZONTAL GUY WIRE AT ITS UPPER END. IF A LOAD OF 5000Nts is hung at the upper end of the boom, find the tension in the guywire and the components of the reaction at the hinge.
what is the centripetal force
Of?
John
centripetal force of attraction that pulls a body that is traversing round the orbit of a circle toward the center of the circle. Fc = MV²/r
Sampson
centripetal force is the force of attraction that pulls a body that is traversing round the orbit of a circle toward the center of the circle. Fc = MV²/r
Sampson
I do believe the formula for centripetal force is F=MA or F=m(v^2/r)
John
I mean the formula is Fc= Mass multiplied by square of velocity all over the Radius of the circle
Sampson
Yes
John
The force is equal to the mass times the velocity squared divided by the radius
John
That's the current chapter I'm on in my engineering physics class
John
Centripetal force is a force of attraction which keeps an object round the orbit towards the center of a circle. Mathematically Fc=mv²/r
In Example, we calculated the final speed of a roller coaster that descended 20 m in height and had an initial speed of 5 m/s downhill. Suppose the roller coaster had had an initial speed of 5 m/s uphill instead, and it coasted uphill, stopped, and then rolled back down to a final point 20 m bel
A steel lift column in a service station is 4 meter long and .2 meter in diameter. Young's modulus for steel is 20 X 1010N/m2.  By how much does the column shrink when a 5000- kg truck is on it?
hi
Abdulrahman
mola mass
Abdulrahman
hi
Asdesaw
what exactly is a transverse wave