<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Determine changes in gravitational potential energy over great distances
  • Apply conservation of energy to determine escape velocity
  • Determine whether astronomical bodies are gravitationally bound

We studied gravitational potential energy in Potential Energy and Conservation of Energy , where the value of g remained constant. We now develop an expression that works over distances such that g is not constant. This is necessary to correctly calculate the energy needed to place satellites in orbit or to send them on missions in space.

Gravitational potential energy beyond earth

We defined work and potential energy in Work and Kinetic Energy and Potential Energy and Conservation of Energy . The usefulness of those definitions is the ease with which we can solve many problems using conservation of energy. Potential energy is particularly useful for forces that change with position, as the gravitational force does over large distances. In Potential Energy and Conservation of Energy , we showed that the change in gravitational potential energy near Earth’s surface is Δ U = m g ( y 2 y 1 ) . This works very well if g does not change significantly between y 1 and y 2 . We return to the definition of work and potential energy to derive an expression that is correct over larger distances.

Recall that work ( W ) is the integral of the dot product between force and distance. Essentially, it is the product of the component of a force along a displacement times that displacement. We define Δ U as the negative of the work done by the force we associate with the potential energy. For clarity, we derive an expression for moving a mass m from distance r 1 from the center of Earth to distance r 2 . However, the result can easily be generalized to any two objects changing their separation from one value to another.

Consider [link] , in which we take m from a distance r 1 from Earth’s center to a distance that is r 2 from the center. Gravity is a conservative force (its magnitude and direction are functions of location only), so we can take any path we wish, and the result for the calculation of work is the same. We take the path shown, as it greatly simplifies the integration. We first move radially outward from distance r 1 to distance r 2 , and then move along the arc of a circle until we reach the final position. During the radial portion, F is opposite to the direction we travel along d r , so E = K 1 + U 1 = K 2 + U 2 . Along the arc, F is perpendicular to d r , so F · d r = 0 . No work is done as we move along the arc. Using the expression for the gravitational force and noting the values for F · d r along the two segments of our path, we have

Δ U = r 1 r 2 F · d r = G M E m r 1 r 2 d r r 2 = G M E m ( 1 r 1 1 r 2 ) .

Since Δ U = U 2 U 1 , we can adopt a simple expression for U :

U = G M E m r .
An illustration of the earth and two larger concentric circles centered around it. The radius of the small circle is labeled r 1 with a black arrow and the radius of the larger circle is labeled r 2 with a black arrow. A red arrow extends from the end of the r 1 arrow to the larger circle, then forms an arc on the larger circle to the tip of the r 2 arrow. The red line is labeled Path of integration.
The work integral, which determines the change in potential energy, can be evaluated along the path shown in red.

Note two important items with this definition. First, U 0 as r . The potential energy is zero when the two masses are infinitely far apart. Only the difference in U is important, so the choice of U = 0 for r = is merely one of convenience. (Recall that in earlier gravity problems, you were free to take U = 0 at the top or bottom of a building, or anywhere.) Second, note that U becomes increasingly more negative as the masses get closer. That is consistent with what you learned about potential energy in Potential Energy and Conservation of Energy . As the two masses are separated, positive work must be done against the force of gravity, and hence, U increases (becomes less negative). All masses naturally fall together under the influence of gravity, falling from a higher to a lower potential energy.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask