<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • List the significant milestones in the history of gravitation
  • Calculate the gravitational force between two point masses
  • Estimate the gravitational force between collections of mass

We first review the history of the study of gravitation, with emphasis on those phenomena that for thousands of years have inspired philosophers and scientists to search for an explanation. Then we examine the simplest form of Newton’s law of universal gravitation and how to apply it.

The history of gravitation

The earliest philosophers wondered why objects naturally tend to fall toward the ground. Aristotle (384–322 BCE) believed that it was the nature of rocks to seek Earth and the nature of fire to seek the Heavens. Brahmagupta (598~665 CE) postulated that Earth was a sphere and that objects possessed a natural affinity for it, falling toward the center from wherever they were located.

The motions of the Sun, our Moon, and the planets have been studied for thousands of years as well. These motions were described with amazing accuracy by Ptolemy (90–168 CE), whose method of epicycles described the paths of the planets as circles within circles. However, there is little evidence that anyone connected the motion of astronomical bodies with the motion of objects falling to Earth—until the seventeenth century.

Nicolaus Copernicus (1473–1543) is generally credited as being the first to challenge Ptolemy’s geocentric (Earth-centered) system and suggest a heliocentric system, in which the Sun is at the center of the solar system. This idea was supported by the incredibly precise naked-eye measurements of planetary motions by Tycho Brahe and their analysis by Johannes Kepler and Galileo Galilei. Kepler showed that the motion of each planet is an ellipse (the first of his three laws, discussed in Kepler’s Laws of Planetary Motion ), and Robert Hooke (the same Hooke who formulated Hooke’s law for springs) intuitively suggested that these motions are due to the planets being attracted to the Sun. However, it was Isaac Newton who connected the acceleration of objects near Earth’s surface with the centripetal acceleration of the Moon in its orbit about Earth.

Finally, in Einstein’s Theory of Gravity , we look at the theory of general relativity proposed by Albert Einstein in 1916. His theory comes from a vastly different perspective, in which gravity is a manifestation of mass warping space and time. The consequences of his theory gave rise to many remarkable predictions, essentially all of which have been confirmed over the many decades following the publication of the theory (including the 2015 measurement of gravitational waves from the merger of two black holes).

Newton’s law of universal gravitation

Newton noted that objects at Earth’s surface (hence at a distance of R E from the center of Earth) have an acceleration of g , but the Moon, at a distance of about 60 R E , has a centripetal acceleration about ( 60 ) 2 times smaller than g . He could explain this by postulating that a force exists between any two objects, whose magnitude is given by the product of the two masses divided by the square of the distance between them. We now know that this inverse square law is ubiquitous in nature, a function of geometry for point sources. The strength of any source at a distance r is spread over the surface of a sphere centered about the mass. The surface area of that sphere is proportional to r 2 . In later chapters, we see this same form in the electromagnetic force.

Questions & Answers

state Hooke's law of elasticity
Aarti Reply
Hooke's law states that the extension produced is directly proportional to the applied force provided that the elastic limit is not exceeded. F=ke;
Shaibu
thanks
Aarti
You are welcome
Shaibu
thnx
Junaid
what is drag force
Junaid
A backward acting force that tends to resist thrust
Ian
solve:A person who weighs 720N in air is lowered in to tank of water to about chin level .He sits in a harness of negligible mass suspended from a scale that reads his apparent weight .He then dumps himself under water submerging his body .If his weight while submerged is 34.3N. find his density
Ian Reply
please help me solve this 👆👆👆
Ian
The weight inside the tank is lesser due to the buoyancy force by the water displaced. Weight of water displaced = His weight outside - his weight inside tank = 720 - 34.3 = 685.7N Now, the density of water = 997kg/m³ (this is a known value) Volume of water displaced = Mass/Density (next com)
Sharath
density or relative density
Shaibu
density
Ian
Upthrust =720-34.3=685.7N mass of water displayed = 685.7/g vol of water displayed = 685.7/g/997 hence, density of man = 720/g / (685.7/g/997) =1046.6 kg/m3
1046.8
R.d=weight in air/upthrust in water =720/34.3=20.99 R.d=density of substance/density of water 20.99=x/1 x=20.99g/cm^3
Shaibu
Kg /cubic meters
how please
Shaibu
Upthrust = 720-34.3=685.7N vol of water = 685.7/g/density of water = 685.7/g/997 so density of man = 720/g /(685.7/g/997) =1046.8 kg/m3
is there anyway i can see your calculations
Ian
Upthrust =720-34.3=685.7
Upthrust 720-34.3
=685.7N
Vol of water = 685.7/g/997
Hence density of man = 720/g / (685.7/g/997)
=1046.8 kg/m3
so the density of water is 997
Shaibu
Yes
Okay, thanks
Shaibu
try finding the volume then
Ian
Vol of man = vol of water displayed
I've done that; I got 0.0687m^3
Shaibu
okay i got it thanks
Ian
u welcome
Shaibu
HELLO kindly assist me on this...(MATHS) show that the function f(x)=[0 for xor=0]is continuous from the right of x->0 but not from the left of x->0
Duncan Reply
I do not get the question can you make it clearer
Ark
Same here, the function looks very ambiguous. please restate the question properly.
Sharath
please help me solve this problem.a hiker begins a trip by first walking 25kmSE from her car.she stops and sets her tent for the night . on the second day, she walks 40km in a direction 60°NorthofEast,at which she discovers a forest ranger's tower.find components of hiker's displacement for each day
Liteboho Reply
Take a paper. put a point (name is A), now draw a line in the South east direction from A. Assume the line is 25 km long. that is the first stop (name the second point B) From B, turn 60 degrees to the north of East and draw another line, name that C. that line is 40 km long. (contd.)
Sharath
Now, you know how to calculate displacements, I hope? the displacement between two points is the shortest distance between the two points. go ahead and do the calculations necessary. Good luck!
Sharath
thank you so much Sharath Kumar
Liteboho
thank you, have also learned alot
Duncan
No issues at all. I love the subject and teaching it is fun. Cheers!
Sharath
cheers!
Liteboho
cheers too
Duncan
what is the definition of model
matthew Reply
please is there any way that i can understand physics very well i know am not support to ask this kind of question....
matthew
yes
Duncan
prove using vector algebra that the diagonals of a rhombus perpendicular to each other.
Baijnath Reply
A projectile is thrown with a speed of v at an angle of theta has a range of R on the surface of the earth. For same v and theta,it's range on the surface of moon will be
Roshani Reply
0
Keshav
what is soln..
Keshav
o
Duncan
Using some kinematics, time taken for the projectile to reach ground is (2*v*g*Sin (∆)) (here, g is gravity on Earth and ∆ is theta) therefore, on Earth, R = 2*v²*g*Sin(∆)*Cos(∆) on moon, the only difference is the gravity. Gravity on moon = 0.166*g substituting that value in R, we get the new R
Sharath
Some corrections to my old post. Time taken to reach ground = 2*v*Sin (∆)/g R = (2*v²*Sin(∆)*Cos(∆))/g I put the g in the numerator by mistake in my old post. apologies for that. R on moon = (R on Earth)/(0.166)
Sharath
state Newton's first law of motion
Awal Reply
Every body will continue in it's state of rest or of uniform motion in a straight line, unless it is compelled to change that state by an external force.
Kumaga
if you want this to become intuitive to you then you should state it
Shii
changing the state of rest or uniform motion of a body
koffi
if a body is in rest or motion it is always rest or motion, upto external force appied on it. it explains inertia
Omsai
what is a vector
smith
a ship move due north at 100kmhr----1 on a River flowing be due east on at 25kmperhr. cal the magnitude of the resultant velocity of the ship.
Emmanuel Reply
The result is a simple vector addition. The angle between the vectors is 90 degrees, so we can use Pythagoras theorem to get the result. V magnitude = sqrt(100*100 + 25*25) = 103.077 km/hr. the direction of the resultant vector can be found using trigonometry. Tan (theta) = 25/100.
Kumar
103.077640640442km/h
Peter
state Newton's first law of motion
Kansiime Reply
An object continues to be in its state of rest or motion unless compelled by some external force
Alem
First law (law of inertia)- If a body is at rest, it would remain at rest and if the body is in the motion, it would be moving with the same velocity until or unless no external force is applied on it. If force F^=0 acceleration a^=0 or v^=0 or constant.
Govindsingh
how would you measure displacement in your car?
Grace Reply
what is constellation
Charles Reply
The product of a. (vector b× vector a)
Umesh Reply
I want to join the conversation
Kumaga Reply
ok
Kamal
Ok
Bishal
ok
Rohit
Two charges 1uc and 3uc are separated 4m apart. find the point on the line connecting them at which their electric field intensity balances each other
Chukwurah
hmmm
JMPSCL
a particle projected from origion moving on x-y plain passing through p&q point (9,7)(18,4)find the equation of trajectory
ali Reply
what is the equation of trajectory
Kumaga
Practice Key Terms 2

Get the best University physics vol... course in your pocket!





Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications?

Ask