# 11.1 Rolling motion  (Page 4/6)

 Page 4 / 6

## Conservation of mechanical energy in rolling motion

In the preceding chapter, we introduced rotational kinetic energy. Any rolling object carries rotational kinetic energy, as well as translational kinetic energy and potential energy if the system requires. Including the gravitational potential energy, the total mechanical energy of an object rolling is

${E}_{\text{T}}=\frac{1}{2}m{v}_{\text{CM}}^{2}+\frac{1}{2}{I}_{\text{CM}}{\omega }^{2}+mgh.$

In the absence of any nonconservative forces that would take energy out of the system in the form of heat, the total energy of a rolling object without slipping is conserved and is constant throughout the motion. Examples where energy is not conserved are a rolling object that is slipping, production of heat as a result of kinetic friction, and a rolling object encountering air resistance.

You may ask why a rolling object that is not slipping conserves energy, since the static friction force is nonconservative. The answer can be found by referring back to [link] . Point P in contact with the surface is at rest with respect to the surface. Therefore, its infinitesimal displacement $d\stackrel{\to }{r}$ with respect to the surface is zero, and the incremental work done by the static friction force is zero. We can apply energy conservation to our study of rolling motion to bring out some interesting results.

## Curiosity rover

The Curiosity rover, shown in [link] , was deployed on Mars on August 6, 2012. The wheels of the rover have a radius of 25 cm. Suppose astronauts arrive on Mars in the year 2050 and find the now-inoperative Curiosity on the side of a basin. While they are dismantling the rover, an astronaut accidentally loses a grip on one of the wheels, which rolls without slipping down into the bottom of the basin 25 meters below. If the wheel has a mass of 5 kg, what is its velocity at the bottom of the basin? The NASA Mars Science Laboratory rover Curiosity during testing on June 3, 2011. The location is inside the Spacecraft Assembly Facility at NASA’s Jet Propulsion Laboratory in Pasadena, California. (credit: NASA/JPL-Caltech)

## Strategy

We use mechanical energy conservation to analyze the problem. At the top of the hill, the wheel is at rest and has only potential energy. At the bottom of the basin, the wheel has rotational and translational kinetic energy, which must be equal to the initial potential energy by energy conservation. Since the wheel is rolling without slipping, we use the relation ${v}_{\text{CM}}=r\omega$ to relate the translational variables to the rotational variables in the energy conservation equation. We then solve for the velocity. From [link] , we see that a hollow cylinder is a good approximation for the wheel, so we can use this moment of inertia to simplify the calculation.

## Solution

Energy at the top of the basin equals energy at the bottom:

$mgh=\frac{1}{2}m{v}_{\text{CM}}^{2}+\frac{1}{2}{I}_{\text{CM}}{\omega }^{2}.$

The known quantities are ${I}_{\text{CM}}=m{r}^{2}\text{,}\phantom{\rule{0.2em}{0ex}}r=0.25\phantom{\rule{0.2em}{0ex}}\text{m,}\phantom{\rule{0.2em}{0ex}}\text{and}\phantom{\rule{0.2em}{0ex}}h=25.0\phantom{\rule{0.2em}{0ex}}\text{m}$ .

We rewrite the energy conservation equation eliminating $\omega$ by using $\omega =\frac{{v}_{\text{CM}}}{r}.$ We have

$mgh=\frac{1}{2}m{v}_{\text{CM}}^{2}+\frac{1}{2}m{r}^{2}\frac{{v}_{\text{CM}}^{2}}{{r}^{2}}$

or

$gh=\frac{1}{2}{v}_{\text{CM}}^{2}+\frac{1}{2}{v}_{\text{CM}}^{2}⇒{v}_{\text{CM}}=\sqrt{gh}.$

On Mars, the acceleration of gravity is $3.71\phantom{\rule{0.2em}{0ex}}{\phantom{\rule{0.2em}{0ex}}\text{m/s}}^{2},$ which gives the magnitude of the velocity at the bottom of the basin as

#### Questions & Answers

Suppose the master cylinder in a hydraulic system is at a greater height than the cylinder it is controlling. Explain how this will affect the force produced at the cylinder that is being controlled.
Louise Reply
Why is popo less than atmospheric? Why is popo greater than pipi?
Louise
The old rubber boot shown below has two leaks. To what maximum height can the water squirt from Leak 1? How does the velocity of water emerging from Leak 2 differ from that of Leak 1? Explain your responses in terms of energy.
Louise
David rolled down the window on his car while driving on the freeway. An empty plastic bag on the floor promptly flew out the window. Explain why.
Louise Reply
the pressure differential exerted a force on the bag greater than the gravitational force holding it on the floor.
gtitboi
what is angular velocity
Sthandazile Reply
The rate of change in angular displacement is defined as angular velocity.
Manorama
a length of copper wire was measured to be 50m with an uncertainty of 1cm, the thickness of the wire was measured to be 1mm with an uncertainty of 0.01mm, using a micrometer screw gauge, calculate the of copper wire used
Nicole Reply
What is the answer please
Mustapha
If centripetal force is directed towards the center,why do you feel that you're thrown away from the center as a car goes around a curve? Explain
Maira Reply
if there is a centripetal force it means that there's also a centripetal acceleration, getting back to your question, just imagine what happens if you pull out of a car when it's quickly moving or when you try to stop when you are running fast, anyway, we notice that there's always a certain force..
Lindomar
... that tends to fight for its previous direction when you try to attribute to it an opposite one ou try to stop it.The same thing also happens whe a car goes around a curve, the car it self is designed to a"straight line"(look at the position of its tyres, mainly the back side ones), so...
Lindomar
... whenever it goes around a curve, it tends to throw away its the occupiers, it's given to the fact that it must interrupt its initial direction and take a new one.
Lindomar
Which kind of wave does wind form
Matthias Reply
calculate the distance you will travel if you mantain an average speed of 10N m/s for 40 second
Abdulai Reply
400m/s
Feng
hw to calculate the momentum of the 2000.0 elephant change hunter at a speed of 7.50 m/s
Kingsley Reply
how many cm makes 1 inches
Hassan Reply
2.5
omwoyo
2.54cm=1inche
omwoyo
how do we convert from m/s to km/hr
Toni Reply
When paddling a canoe upstream, it is wisest to travel as near to the shore as possible. When canoeing downstream, it may be best to stay near the middle. Explain why?
SANA Reply
Explain why polarization does not occur in sound
Nuradeen
one ship sailing east with a speed of 7.5m/s passes a certain point at 8am and a second ship sailing north at the same speed passed the same point at 9.30am at what distance are they closet together and what is the distance between them then
Kuber Reply
density of a subtance is given as 360g/cm,put it in it s.i unit form
Linda Reply
if m2 is twice of m1. find the ration of kinetic energy in COM system to lab system of elastic collision
Raman Reply
What is a volt equal to?
Clifton Reply

### Read also:

#### Get Jobilize Job Search Mobile App in your pocket Now!

Source:  OpenStax, University physics volume 1. OpenStax CNX. Sep 19, 2016 Download for free at http://cnx.org/content/col12031/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 1' conversation and receive update notifications? By Richley Crapo By Yacoub Jayoghli By Stephen Voron By By Royalle Moore By OpenStax By David Martin By Michael Pitt By Robert Murphy By OpenStax