From
[link] (a), we see the force vectors involved in preventing the wheel from slipping. In (b), point
P that touches the surface is at rest relative to the surface. Relative to the center of mass, point
P has velocity
$\text{\u2212}R\omega \widehat{i}$ , where
R is the radius of the wheel and
$\omega $ is the wheel’s angular velocity about its axis. Since the wheel is rolling, the velocity of
P with respect to the surface is its velocity with respect to the center of mass plus the velocity of the center of mass with respect to the surface:
Since the velocity of
P relative to the surface is zero,
${v}_{P}=0$ , this says that
${v}_{\text{CM}}=R\omega .$
Thus, the velocity of the wheel’s center of mass is its radius times the angular velocity about its axis. We show the correspondence of the linear variable on the left side of the equation with the angular variable on the right side of the equation. This is done below for the linear acceleration.
If we differentiate
[link] on the left side of the equation, we obtain an expression for the linear acceleration of the center of mass. On the right side of the equation,
R is a constant and since
$\alpha =\frac{d\omega}{dt},$ we have
${a}_{\text{CM}}=R\alpha .$
Furthermore, we can find the distance the wheel travels in terms of angular variables by referring to
[link] . As the wheel rolls from point
A to point
B , its outer surface maps onto the ground by exactly the distance travelled, which is
${d}_{\text{CM}}.$ We see from
[link] that the length of the outer surface that maps onto the ground is the arc length
$R\theta \text{}$ . Equating the two distances, we obtain
${d}_{\text{CM}}=R\theta .$
Rolling down an inclined plane
A solid cylinder rolls down an inclined plane without slipping, starting from rest. It has mass
m and radius
r . (a) What is its acceleration? (b) What condition must the coefficient of static friction
${\mu}_{\text{S}}$ satisfy so the cylinder does not slip?
Strategy
Draw a sketch and free-body diagram, and choose a coordinate system. We put
x in the direction down the plane and
y upward perpendicular to the plane. Identify the forces involved. These are the normal force, the force of gravity, and the force due to friction. Write down Newton’s laws in the
x - and
y -directions, and Newton’s law for rotation, and then solve for the acceleration and force due to friction.
Solution
The free-body diagram and sketch are shown in
[link] , including the normal force, components of the weight, and the static friction force. There is barely enough friction to keep the cylinder rolling without slipping. Since there is no slipping, the magnitude of the friction force is less than or equal to
${\mu}_{S}N$ . Writing down Newton’s laws in the
x - and
y -directions, we have
The torques are calculated about the axis through the center of mass of the cylinder. The only nonzero torque is provided by the friction force. We have
${f}_{\text{S}}r={I}_{\text{CM}}\alpha .$
Finally, the linear acceleration is related to the angular acceleration by
${({a}_{\text{CM}})}_{x}=r\alpha .$
These equations can be used to solve for
${a}_{\text{CM}},\alpha ,\phantom{\rule{0.2em}{0ex}}\text{and}\phantom{\rule{0.2em}{0ex}}{f}_{\text{S}}$ in terms of the moment of inertia, where we have dropped the
x -subscript. We write
${a}_{\text{CM}}$ in terms of the vertical component of gravity and the friction force, and make the following substitutions.
Note that this result is independent of the coefficient of static friction,
${\mu}_{\text{S}}$ .
Since we have a solid cylinder, from
[link] , we have
${I}_{\text{CM}}=m{r}^{2}\text{/}2$ and
Substituting this expression into the condition for no slipping, and noting that
$N=mg\phantom{\rule{0.2em}{0ex}}\text{cos}\phantom{\rule{0.2em}{0ex}}\theta $ , we have
principle of superposition allows us to find the electric field on a charge by finding the x and y components
Kidus
Two Masses,m and 2m,approach each along a path at right angles to each other .After collision,they stick together
and move off at 2m/s at angle 37° to the original direction of the mass m. What where the initial speeds of the two particles
MB
2m & m initial velocity 1.8m/s & 4.8m/s respectively,apply conservation of linear momentum in two perpendicular directions.
Shubhrant
A body on circular orbit makes an angular displacement given by teta(t)=2(t)+5(t)+5.if time t is in seconds calculate the angular velocity at t=2s
MB
2+5+0=7sec
differentiate above equation w.r.t
time, as angular velocity is rate of change of angular displacement.
Shubhrant
Ok i got a question I'm not asking how gravity works. I would like to know why gravity works. like why is gravity the way it is. What is the true nature of gravity?
gravity pulls towards a mass...like every object is pulled towards earth
Ashok
An automobile traveling with an initial velocity of 25m/s is accelerated to 35m/s in 6s,the wheel of the automobile is 80cm in diameter. find
* The angular acceleration
a postmodernist would say that he did not discover them, he made them up and they're not actually a reality in itself, but a mere construct by which we decided to observe the word around us
elo
how?
Qhoshe
Besides his work on universal gravitation (gravity), Newton developed the 3 laws of motion which form the basic principles of modern physics. His discovery of calculus led the way to more powerful methods of solving mathematical problems. His work in optics included the study of white light and
the velocity of a boat related to water is 3i+4j and that of water related to earth is i-3j. what is the velocity of the boat relative to earth.If unit vector i and j represent 1km/hour east and north respectively