<< Chapter < Page Chapter >> Page >
E n = 1 2 m e v 2 k Zq e 2 r n . size 12{E rSub { size 8{n} } = { {1} over {2} } m rSub { size 8{e} } v rSup { size 8{2} } - k { { ital "Zq" rSub { size 8{e} } rSup { size 8{2} } } over {r rSub { size 8{n} } } } } {}

Now we substitute r n size 12{r rSub { size 8{n} } } {} and v size 12{v} {} from earlier equations into the above expression for energy. Algebraic manipulation yields

E n = Z 2 n 2 E 0 ( n = 1, 2, 3, ... ) size 12{E rSub { size 8{n} } = - { {Z rSup { size 8{2} } } over {n rSup { size 8{2} } } } E rSub { size 8{0} } \( n=1," 2, 3, " "." "." "." \) } {}

for the orbital energies of hydrogen-like atoms    . Here, E 0 size 12{E rSub { size 8{0} } } {} is the ground-state energy n = 1 size 12{ left (n=1 right )} {} for hydrogen Z = 1 size 12{ left (Z=1 right )} {} and is given by

E 0 = 2 π 2 q e 4 m e k 2 h 2 = 13.6 eV.

Thus, for hydrogen,

E n = 13.6 eV n 2 ( n = 1, 2, 3, ...).

[link] shows an energy-level diagram for hydrogen that also illustrates how the various spectral series for hydrogen are related to transitions between energy levels.

An energy level diagram is shown. At the left, there is a vertical arrow showing the energy levels increasing from bottom to top. At the bottom, there is a horizontal line showing the energy levels of Lyman series, n is one. The energy is marked as negative thirteen point six electron volt. Then, in the upper half of the figure, another horizontal line showing Balmer series is shown when the value of n is two. The energy level is labeled as negative three point four zero electron volt. Above it there is another horizontal line showing Paschen series. The energy level is marked as negative one point five one electron volt. Above this line, some more lines are shown in a small area to show energy levels of other values of n.
Energy-level diagram for hydrogen showing the Lyman, Balmer, and Paschen series of transitions. The orbital energies are calculated using the above equation, first derived by Bohr.

Electron total energies are negative, since the electron is bound to the nucleus, analogous to being in a hole without enough kinetic energy to escape. As n size 12{n} {} approaches infinity, the total energy becomes zero. This corresponds to a free electron with no kinetic energy, since r n size 12{r rSub { size 8{n} } } {} gets very large for large n size 12{n} {} , and the electric potential energy thus becomes zero. Thus, 13.6 eV is needed to ionize hydrogen (to go from –13.6 eV to 0, or unbound), an experimentally verified number. Given more energy, the electron becomes unbound with some kinetic energy. For example, giving 15.0 eV to an electron in the ground state of hydrogen strips it from the atom and leaves it with 1.4 eV of kinetic energy.

Finally, let us consider the energy of a photon emitted in a downward transition, given by the equation to be

Δ E = hf = E i E f . size 12{ΔE= ital "hf"=E rSub { size 8{i} } - E rSub { size 8{f} } } {}

Substituting E n = ( 13.6 eV / n 2 ) size 12{E rSub { size 8{n} } = - "13" "." 6``"eV"/n rSup { size 8{2} } } {} , we see that

hf = 13.6 eV 1 n f 2 1 n i 2 . size 12{ ital "hf"= left ("13" "." 6" eV" right ) left ( { {1} over {n rSub { size 8{f} } rSup { size 8{2} } } } - { {1} over {n rSub { size 8{i} } rSup { size 8{2} } } } right )} {}

Dividing both sides of this equation by hc size 12{ ital "hc"} {} gives an expression for 1 / λ size 12{1/λ} {} :

hf hc = f c = 1 λ = 13.6 eV hc 1 n f 2 1 n i 2 . size 12{ { { ital "hf"} over { ital "hc"} } = { {f} over {c} } = { {1} over {λ} } = { { left ("13" "." 6" eV" right )} over { ital "hc"} } left ( { {1} over {n rSub { size 8{f} } rSup { size 8{2} } } } - { {1} over {n rSub { size 8{i} } rSup { size 8{2} } } } right )} {}

It can be shown that

13.6 eV hc = 13.6 eV 1.602 × 10 −19 J/eV 6.626 × 10 −34 J·s 2.998 × 10 8 m/s = 1.097 × 10 7 m –1 = R

is the Rydberg constant    . Thus, we have used Bohr’s assumptions to derive the formula first proposed by Balmer years earlier as a recipe to fit experimental data.

1 λ = R 1 n f 2 1 n i 2 size 12{ { {1} over {λ} } =R left ( { {1} over {n rSub { size 8{f} } rSup { size 8{2} } } } - { {1} over {n rSub { size 8{i} } rSup { size 8{2} } } } right )} {}

We see that Bohr’s theory of the hydrogen atom answers the question as to why this previously known formula describes the hydrogen spectrum. It is because the energy levels are proportional to 1 / n 2 size 12{1/n rSup { size 8{2} } } {} , where n size 12{n} {} is a non-negative integer. A downward transition releases energy, and so n i size 12{n rSub { size 8{i} } } {} must be greater than n f size 12{n rSub { size 8{f} } } {} . The various series are those where the transitions end on a certain level. For the Lyman series, n f = 1 size 12{n rSub { size 8{f} } =1} {} — that is, all the transitions end in the ground state (see also [link] ). For the Balmer series, n f = 2 size 12{n rSub { size 8{f} } =2} {} , or all the transitions end in the first excited state; and so on. What was once a recipe is now based in physics, and something new is emerging—angular momentum is quantized.

Triumphs and limits of the bohr theory

Bohr did what no one had been able to do before. Not only did he explain the spectrum of hydrogen, he correctly calculated the size of the atom from basic physics. Some of his ideas are broadly applicable. Electron orbital energies are quantized in all atoms and molecules. Angular momentum is quantized. The electrons do not spiral into the nucleus, as expected classically (accelerated charges radiate, so that the electron orbits classically would decay quickly, and the electrons would sit on the nucleus—matter would collapse). These are major triumphs.

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask