<< Chapter < Page Chapter >> Page >
E n = 1 2 m e v 2 k Zq e 2 r n . size 12{E rSub { size 8{n} } = { {1} over {2} } m rSub { size 8{e} } v rSup { size 8{2} } - k { { ital "Zq" rSub { size 8{e} } rSup { size 8{2} } } over {r rSub { size 8{n} } } } } {}

Now we substitute r n size 12{r rSub { size 8{n} } } {} and v size 12{v} {} from earlier equations into the above expression for energy. Algebraic manipulation yields

E n = Z 2 n 2 E 0 ( n = 1, 2, 3, ... ) size 12{E rSub { size 8{n} } = - { {Z rSup { size 8{2} } } over {n rSup { size 8{2} } } } E rSub { size 8{0} } \( n=1," 2, 3, " "." "." "." \) } {}

for the orbital energies of hydrogen-like atoms    . Here, E 0 size 12{E rSub { size 8{0} } } {} is the ground-state energy n = 1 size 12{ left (n=1 right )} {} for hydrogen Z = 1 size 12{ left (Z=1 right )} {} and is given by

E 0 = 2 π 2 q e 4 m e k 2 h 2 = 13.6 eV.

Thus, for hydrogen,

E n = 13.6 eV n 2 ( n = 1, 2, 3, ...).

[link] shows an energy-level diagram for hydrogen that also illustrates how the various spectral series for hydrogen are related to transitions between energy levels.

An energy level diagram is shown. At the left, there is a vertical arrow showing the energy levels increasing from bottom to top. At the bottom, there is a horizontal line showing the energy levels of Lyman series, n is one. The energy is marked as negative thirteen point six electron volt. Then, in the upper half of the figure, another horizontal line showing Balmer series is shown when the value of n is two. The energy level is labeled as negative three point four zero electron volt. Above it there is another horizontal line showing Paschen series. The energy level is marked as negative one point five one electron volt. Above this line, some more lines are shown in a small area to show energy levels of other values of n.
Energy-level diagram for hydrogen showing the Lyman, Balmer, and Paschen series of transitions. The orbital energies are calculated using the above equation, first derived by Bohr.

Electron total energies are negative, since the electron is bound to the nucleus, analogous to being in a hole without enough kinetic energy to escape. As n size 12{n} {} approaches infinity, the total energy becomes zero. This corresponds to a free electron with no kinetic energy, since r n size 12{r rSub { size 8{n} } } {} gets very large for large n size 12{n} {} , and the electric potential energy thus becomes zero. Thus, 13.6 eV is needed to ionize hydrogen (to go from –13.6 eV to 0, or unbound), an experimentally verified number. Given more energy, the electron becomes unbound with some kinetic energy. For example, giving 15.0 eV to an electron in the ground state of hydrogen strips it from the atom and leaves it with 1.4 eV of kinetic energy.

Finally, let us consider the energy of a photon emitted in a downward transition, given by the equation to be

Δ E = hf = E i E f . size 12{ΔE= ital "hf"=E rSub { size 8{i} } - E rSub { size 8{f} } } {}

Substituting E n = ( 13.6 eV / n 2 ) size 12{E rSub { size 8{n} } = - "13" "." 6``"eV"/n rSup { size 8{2} } } {} , we see that

hf = 13.6 eV 1 n f 2 1 n i 2 . size 12{ ital "hf"= left ("13" "." 6" eV" right ) left ( { {1} over {n rSub { size 8{f} } rSup { size 8{2} } } } - { {1} over {n rSub { size 8{i} } rSup { size 8{2} } } } right )} {}

Dividing both sides of this equation by hc size 12{ ital "hc"} {} gives an expression for 1 / λ size 12{1/λ} {} :

hf hc = f c = 1 λ = 13.6 eV hc 1 n f 2 1 n i 2 . size 12{ { { ital "hf"} over { ital "hc"} } = { {f} over {c} } = { {1} over {λ} } = { { left ("13" "." 6" eV" right )} over { ital "hc"} } left ( { {1} over {n rSub { size 8{f} } rSup { size 8{2} } } } - { {1} over {n rSub { size 8{i} } rSup { size 8{2} } } } right )} {}

It can be shown that

13.6 eV hc = 13.6 eV 1.602 × 10 −19 J/eV 6.626 × 10 −34 J·s 2.998 × 10 8 m/s = 1.097 × 10 7 m –1 = R

is the Rydberg constant    . Thus, we have used Bohr’s assumptions to derive the formula first proposed by Balmer years earlier as a recipe to fit experimental data.

1 λ = R 1 n f 2 1 n i 2 size 12{ { {1} over {λ} } =R left ( { {1} over {n rSub { size 8{f} } rSup { size 8{2} } } } - { {1} over {n rSub { size 8{i} } rSup { size 8{2} } } } right )} {}

We see that Bohr’s theory of the hydrogen atom answers the question as to why this previously known formula describes the hydrogen spectrum. It is because the energy levels are proportional to 1 / n 2 size 12{1/n rSup { size 8{2} } } {} , where n size 12{n} {} is a non-negative integer. A downward transition releases energy, and so n i size 12{n rSub { size 8{i} } } {} must be greater than n f size 12{n rSub { size 8{f} } } {} . The various series are those where the transitions end on a certain level. For the Lyman series, n f = 1 size 12{n rSub { size 8{f} } =1} {} — that is, all the transitions end in the ground state (see also [link] ). For the Balmer series, n f = 2 size 12{n rSub { size 8{f} } =2} {} , or all the transitions end in the first excited state; and so on. What was once a recipe is now based in physics, and something new is emerging—angular momentum is quantized.

Triumphs and limits of the bohr theory

Bohr did what no one had been able to do before. Not only did he explain the spectrum of hydrogen, he correctly calculated the size of the atom from basic physics. Some of his ideas are broadly applicable. Electron orbital energies are quantized in all atoms and molecules. Angular momentum is quantized. The electrons do not spiral into the nucleus, as expected classically (accelerated charges radiate, so that the electron orbits classically would decay quickly, and the electrons would sit on the nucleus—matter would collapse). These are major triumphs.

Questions & Answers

summarize halerambos & holbon
David Reply
the Three stages of Auguste Comte
Clementina Reply
what are agents of socialization
Antonio Reply
sociology of education
Nuhu Reply
definition of sociology of education
Nuhu
what is culture
Abdulrahim Reply
shared beliefs, values, and practices
AI-Robot
What are the two type of scientific method
ogunniran Reply
I'm willing to join you
Aceng Reply
what are the scientific method of sociology
Man
what is socialization
ogunniran Reply
the process wherein people come to understand societal norms and expectations, to accept society's beliefs, and to be aware of societal values
AI-Robot
scientific method in doing research
ogunniran
defimition of sickness in afica
Anita
Cosmology
ogunniran
Hmmm
ogunniran
list and explain the terms that found in society
REMMY Reply
list and explain the terms that found in society
Mukhtar
what are the agents of socialization
Antonio
Family Peer group Institution
Abdulwajud
I mean the definition
Antonio
ways of perceived deviance indifferent society
Naomi Reply
reasons of joining groups
SAM
to bring development to the nation at large
Hyellafiya
entails of consultative and consensus building from others
Gadama
World first Sociologist?
Abu
What is evolutionary model
Muhammad Reply
Evolution models refer to mathematical and computational representations of the processes involved in biological evolution. These models aim to simulate and understand how species change over time through mechanisms such as natural selection, genetic drift, and mutation. Evolutionary models can be u
faruk
what are the modern trends in religious behaviours
Selekeye Reply
what are social norms
Daniel Reply
shared standards of acceptable behavior by the group or appropriate behavior in a particular institution or those behaviors that are acceptable in a society
Lucius
that is how i understood it
Lucius
examples of societal norms
Diamond
Discuss the characteristics of the research located within positivist and the interpretivist paradigm
Tariro Reply
what is Industrialisation
Selekeye Reply
industrialization
Angelo
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask