<< Chapter < Page Chapter >> Page >
v w = λ T size 12{v size 8{w}= { {λ} over {T} } } {}

or

v w = . size 12{v size 8{w}=fλ} {}

This fundamental relationship holds for all types of waves. For water waves, v w size 12{v rSub { size 8{w} } } {} is the speed of a surface wave; for sound, v w size 12{v rSub { size 8{w} } } {} is the speed of sound; and for visible light, v w size 12{v rSub { size 8{w} } } {} is the speed of light, for example.

Take-home experiment: waves in a bowl

Fill a large bowl or basin with water and wait for the water to settle so there are no ripples. Gently drop a cork into the middle of the bowl. Estimate the wavelength and period of oscillation of the water wave that propagates away from the cork. Remove the cork from the bowl and wait for the water to settle again. Gently drop the cork at a height that is different from the first drop. Does the wavelength depend upon how high above the water the cork is dropped?

Calculate the velocity of wave propagation: gull in the ocean

Calculate the wave velocity of the ocean wave in [link] if the distance between wave crests is 10.0 m and the time for a sea gull to bob up and down is 5.00 s.

Strategy

We are asked to find v w size 12{v rSub { size 8{w} } } {} . The given information tells us that λ = 10 . 0 m size 12{λ="10" "." 0`"m"} {} and T = 5 . 00 s size 12{T=5 "." "00"`"s"} {} . Therefore, we can use v w = λ T size 12{v size 8{w}= { {λ} over {T} } } {} to find the wave velocity.

Solution

  1. Enter the known values into v w = λ T size 12{v size 8{w}= { {λ} over {T} } } {} :
    v w = 10.0 m 5 .00 s . size 12{v size 8{w}= { {"10" "." 0" m"} over {5 "." "00"" s"} } } {}
  2. Solve for v w size 12{v rSub { size 8{w} } } {} to find v w = 2.00 m/s. size 12{v rSub { size 8{w} } } {}

Discussion

This slow speed seems reasonable for an ocean wave. Note that the wave moves to the right in the figure at this speed, not the varying speed at which the sea gull moves up and down.

Got questions? Get instant answers now!

Transverse and longitudinal waves

A simple wave consists of a periodic disturbance that propagates from one place to another. The wave in [link] propagates in the horizontal direction while the surface is disturbed in the vertical direction. Such a wave is called a transverse wave    or shear wave; in such a wave, the disturbance is perpendicular to the direction of propagation. In contrast, in a longitudinal wave    or compressional wave, the disturbance is parallel to the direction of propagation. [link] shows an example of a longitudinal wave. The size of the disturbance is its amplitude X and is completely independent of the speed of propagation v w size 12{v rSub { size 8{w} } } {} .

The figure shows a woman holding a long spring in her hand and moving it up and down causing it to move in a zigzag manner away from her. It is an example of a transverse wave, the wave propagates horizontally. The direction of motion of the wave is shown with the help of right arrows at each crest and trough.
In this example of a transverse wave, the wave propagates horizontally, and the disturbance in the cord is in the vertical direction.
The figure shows a woman standing at left pushing a long spring in to and fro motion in horizontal direction away from her without moving her hand up and down. The cord stretches and contracts back and forth. This is an example of a longitudinal wave, the wave propagates horizontally. At some points the spring is compressed and at some other points the spring is expanded. One contracted part is equal to the amplitude X.
In this example of a longitudinal wave, the wave propagates horizontally, and the disturbance in the cord is also in the horizontal direction.

Waves may be transverse, longitudinal, or a combination of the two . (Water waves are actually a combination of transverse and longitudinal. The simplified water wave illustrated in [link] shows no longitudinal motion of the bird.) The waves on the strings of musical instruments are transverse—so are electromagnetic waves, such as visible light.

Sound waves in air and water are longitudinal. Their disturbances are periodic variations in pressure that are transmitted in fluids. Fluids do not have appreciable shear strength, and thus the sound waves in them must be longitudinal or compressional. Sound in solids can be both longitudinal and transverse.

The figure shows a guitar connected to an amplifier and a man holding a sheet of paper facing the speaker attached to the amplifier. The strings of the guitar when played cause transverse waves. On the other hand, the sound of the guitar creates ripples on the sheet of paper causing it to rattle in a direction that shows that the sound waves are longitudinal.
The wave on a guitar string is transverse. The sound wave rattles a sheet of paper in a direction that shows the sound wave is longitudinal.

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask