<< Chapter < Page Chapter >> Page >
  • Calculate using Torricelli’s theorem.
  • Calculate power in fluid flow.

Torricelli’s theorem

[link] shows water gushing from a large tube through a dam. What is its speed as it emerges? Interestingly, if resistance is negligible, the speed is just what it would be if the water fell a distance h size 12{h} {} from the surface of the reservoir; the water’s speed is independent of the size of the opening. Let us check this out. Bernoulli’s equation must be used since the depth is not constant. We consider water flowing from the surface (point 1) to the tube’s outlet (point 2). Bernoulli’s equation as stated in previously is

P 1 + 1 2 ρv 1 2 + ρ gh 1 = P 2 + 1 2 ρv 2 2 + ρ gh 2 . size 12{P rSub { size 8{1} } + { { size 8{1} } over { size 8{2} } } ρv rSub { size 8{1} } rSup { size 8{2} } +ρ ital "gh" rSub { size 8{1} } =P rSub { size 8{2} } + { { size 8{1} } over { size 8{2} } } ρv rSub { size 8{2} } rSup { size 8{2} } +ρ ital "gh" rSub { size 8{2} } } {}

Both P 1 size 12{P rSub { size 8{1} } } {} and P 2 size 12{P rSub { size 8{2} } } {} equal atmospheric pressure ( P 1 size 12{P rSub { size 8{1} } } {} is atmospheric pressure because it is the pressure at the top of the reservoir. P 2 size 12{P rSub { size 8{2} } } {} must be atmospheric pressure, since the emerging water is surrounded by the atmosphere and cannot have a pressure different from atmospheric pressure.) and subtract out of the equation, leaving

1 2 ρv 1 2 + ρ gh 1 = 1 2 ρv 2 2 + ρ gh 2 . size 12{ { { size 8{1} } over { size 8{2} } } ρv rSub { size 8{1} } rSup { size 8{2} } +ρ ital "gh" rSub { size 8{1} } = { { size 8{1} } over { size 8{2} } } ρv rSub { size 8{2} } rSup { size 8{2} } +ρ ital "gh" rSub { size 8{2} } } {}

Solving this equation for v 2 2 size 12{v rSub { size 8{2} } rSup { size 8{2} } } {} , noting that the density ρ cancels (because the fluid is incompressible), yields

v 2 2 = v 1 2 + 2 g ( h 1 h 2 ) . size 12{v rSub { size 8{2} } rSup { size 8{2} } =v rSub { size 8{1} } rSup { size 8{2} } +2g \( h rSub { size 8{1} } - h rSub { size 8{2} } \) } {}

We let h = h 1 h 2 size 12{h=h rSub { size 8{1} } - h rSub { size 8{2} } } {} ; the equation then becomes

v 2 2 = v 1 2 + 2 gh size 12{v rSub { size 8{2} } rSup { size 8{2} } =v rSub { size 8{1} } rSup { size 8{2} } +2 ital "gh"} {}

where h size 12{h} {} is the height dropped by the water. This is simply a kinematic equation for any object falling a distance h size 12{h} {} with negligible resistance. In fluids, this last equation is called Torricelli’s theorem . Note that the result is independent of the velocity’s direction, just as we found when applying conservation of energy to falling objects.

Part a of the figure shows a photograph of a dam with water gushing from a large tube at the base of a dam. Part b shows the schematic diagram for the flow of water in a reservoir. The reservoir is shown in the form of a triangular section with a horizontal opening along the base little near to the base. The water is shown to flow through the horizontal opening near the base. The height which it falls is shown as h two. The pressure and velocity of water at this point are P two and v two. The height to which the water can fall if it falls from a height h above the opening is given by h 2. The pressure and velocity of water at this point are P one and v one.
(a) Water gushes from the base of the Studen Kladenetz dam in Bulgaria. (credit: Kiril Kapustin; http://www.ImagesFromBulgaria.com) (b) In the absence of significant resistance, water flows from the reservoir with the same speed it would have if it fell the distance h size 12{h} {} without friction. This is an example of Torricelli’s theorem.
Figure shows a fire engine that is stationed next to a tall building. A floor of the building ten meters above the ground has caught fire. The flames are shown coming out. A fire man has reached close to the fire caught area using a ladder and is spraying water on the fire using a hose attached to the fire engine.
Pressure in the nozzle of this fire hose is less than at ground level for two reasons: the water has to go uphill to get to the nozzle, and speed increases in the nozzle. In spite of its lowered pressure, the water can exert a large force on anything it strikes, by virtue of its kinetic energy. Pressure in the water stream becomes equal to atmospheric pressure once it emerges into the air.

All preceding applications of Bernoulli’s equation involved simplifying conditions, such as constant height or constant pressure. The next example is a more general application of Bernoulli’s equation in which pressure, velocity, and height all change. (See [link] .)

Calculating pressure: a fire hose nozzle

Fire hoses used in major structure fires have inside diameters of 6.40 cm. Suppose such a hose carries a flow of 40.0 L/s starting at a gauge pressure of 1 . 62 × 10 6 N/m 2 size 12{1 "." "62" times "10" rSup { size 8{6} } `"N/m" rSup { size 8{2} } } {} . The hose goes 10.0 m up a ladder to a nozzle having an inside diameter of 3.00 cm. Assuming negligible resistance, what is the pressure in the nozzle?

Strategy

Here we must use Bernoulli’s equation to solve for the pressure, since depth is not constant.

Solution

Bernoulli’s equation states

P 1 + 1 2 ρv 1 2 + ρ gh 1 = P 2 + 1 2 ρv 2 2 + ρ gh 2 , size 12{P rSub { size 8{1} } + { { size 8{1} } over { size 8{2} } } ρv rSub { size 8{1} } rSup { size 8{2} } +ρ ital "gh" rSub { size 8{1} } =P rSub { size 8{2} } + { { size 8{1} } over { size 8{2} } } ρv rSub { size 8{2} } rSup { size 8{2} } +ρ ital "gh" rSub { size 8{2} } } {}

where the subscripts 1 and 2 refer to the initial conditions at ground level and the final conditions inside the nozzle, respectively. We must first find the speeds v 1 size 12{v rSub { size 8{1} } } {} and v 2 size 12{v rSub { size 8{2} } } {} . Since Q = A 1 v 1 size 12{Q=A rSub { size 8{1} } v"" lSub { size 8{1} } } {} , we get

v 1 = Q A 1 = 40 . 0 × 10 3 m 3 /s π ( 3 . 20 × 10 2 m ) 2 = 12 . 4 m/s . size 12{v rSub { size 8{1} } = { {Q} over {A rSub { size 8{1} } } } = { {"40" "." 0 times "10" rSup { size 8{ - 3} } " m" rSup { size 8{3} } "/s"} over {π \( 3 "." "20" times "10" rSup { size 8{ - 2} } " m" \) rSup { size 8{2} } } } ="12" "." 4" m/s"} {}

Similarly, we find

v 2 = 56.6 m/s . size 12{v rSub { size 8{2} } ="56" "." 6" m/s"} {}

(This rather large speed is helpful in reaching the fire.) Now, taking h 1 size 12{h rSub { size 8{1} } } {} to be zero, we solve Bernoulli’s equation for P 2 size 12{P rSub { size 8{2} } } {} :

P 2 = P 1 + 1 2 ρ v 1 2 v 2 2 ρ gh 2 . size 12{P rSub { size 8{2} } =P rSub { size 8{1} } + { {1} over {2} } ρ \( v rSub { size 8{1} rSup { size 8{2} } } - v rSub { size 8{2} rSup { size 8{2} } } \) - ρ ital "gh" rSub { size 8{2} } } {}

Substituting known values yields

P 2 = 1 . 62 × 10 6 N/m 2 + 1 2 ( 1000 kg/m 3 ) ( 12 . 4 m/s ) 2 ( 56 . 6 m/s ) 2 ( 1000 kg/m 3 ) ( 9 . 80 m/s 2 ) ( 10 . 0 m ) = 0 . size 12{P rSub { size 8{2} } =1 "." "62" times "10" rSup { size 8{6} } " N/m" rSup { size 8{2} } + { {1} over {2} } \( "1000"" kg/m" rSup { size 8{3} } \) left [ \( "12" "." 4" m/s" \) rSup { size 8{2} } - \( "56" "." 6" m/s" \) rSup { size 8{2} } right ] - \( "1000"" kg/m" rSup { size 8{3} } \) \( 9 "." 8" m/s" rSup { size 8{2} } \) \( "10" "." 0" m" \) =0} {}

Discussion

This value is a gauge pressure, since the initial pressure was given as a gauge pressure. Thus the nozzle pressure equals atmospheric pressure, as it must because the water exits into the atmosphere without changes in its conditions.

Got questions? Get instant answers now!

Questions & Answers

how did you get 1640
Noor Reply
If auger is pair are the roots of equation x2+5x-3=0
Peter Reply
Wayne and Dennis like to ride the bike path from Riverside Park to the beach. Dennis’s speed is seven miles per hour faster than Wayne’s speed, so it takes Wayne 2 hours to ride to the beach while it takes Dennis 1.5 hours for the ride. Find the speed of both bikers.
MATTHEW Reply
420
Sharon
from theory: distance [miles] = speed [mph] × time [hours] info #1 speed_Dennis × 1.5 = speed_Wayne × 2 => speed_Wayne = 0.75 × speed_Dennis (i) info #2 speed_Dennis = speed_Wayne + 7 [mph] (ii) use (i) in (ii) => [...] speed_Dennis = 28 mph speed_Wayne = 21 mph
George
Let W be Wayne's speed in miles per hour and D be Dennis's speed in miles per hour. We know that W + 7 = D and W * 2 = D * 1.5. Substituting the first equation into the second: W * 2 = (W + 7) * 1.5 W * 2 = W * 1.5 + 7 * 1.5 0.5 * W = 7 * 1.5 W = 7 * 3 or 21 W is 21 D = W + 7 D = 21 + 7 D = 28
Salma
Devon is 32 32​​ years older than his son, Milan. The sum of both their ages is 54 54​. Using the variables d d​ and m m​ to represent the ages of Devon and Milan, respectively, write a system of equations to describe this situation. Enter the equations below, separated by a comma.
Aaron Reply
find product (-6m+6) ( 3m²+4m-3)
SIMRAN Reply
-42m²+60m-18
Salma
what is the solution
bill
how did you arrive at this answer?
bill
-24m+3+3mÁ^2
Susan
i really want to learn
Amira
I only got 42 the rest i don't know how to solve it. Please i need help from anyone to help me improve my solving mathematics please
Amira
Hw did u arrive to this answer.
Aphelele
hi
Bajemah
-6m(3mA²+4m-3)+6(3mA²+4m-3) =-18m²A²-24m²+18m+18mA²+24m-18 Rearrange like items -18m²A²-24m²+42m+18A²-18
Salma
complete the table of valuesfor each given equatio then graph. 1.x+2y=3
Jovelyn Reply
x=3-2y
Salma
y=x+3/2
Salma
Hi
Enock
given that (7x-5):(2+4x)=8:7find the value of x
Nandala
3x-12y=18
Kelvin
please why isn't that the 0is in ten thousand place
Grace Reply
please why is it that the 0is in the place of ten thousand
Grace
Send the example to me here and let me see
Stephen
A meditation garden is in the shape of a right triangle, with one leg 7 feet. The length of the hypotenuse is one more than the length of one of the other legs. Find the lengths of the hypotenuse and the other leg
Marry Reply
how far
Abubakar
cool u
Enock
state in which quadrant or on which axis each of the following angles given measure. in standard position would lie 89°
Abegail Reply
hello
BenJay
hi
Method
I am eliacin, I need your help in maths
Rood
how can I help
Sir
hmm can we speak here?
Amoon
however, may I ask you some questions about Algarba?
Amoon
hi
Enock
what the last part of the problem mean?
Roger
The Jones family took a 15 mile canoe ride down the Indian River in three hours. After lunch, the return trip back up the river took five hours. Find the rate, in mph, of the canoe in still water and the rate of the current.
cameron Reply
Shakir works at a computer store. His weekly pay will be either a fixed amount, $925, or $500 plus 12% of his total sales. How much should his total sales be for his variable pay option to exceed the fixed amount of $925.
mahnoor Reply
I'm guessing, but it's somewhere around $4335.00 I think
Lewis
12% of sales will need to exceed 925 - 500, or 425 to exceed fixed amount option. What amount of sales does that equal? 425 ÷ (12÷100) = 3541.67. So the answer is sales greater than 3541.67. Check: Sales = 3542 Commission 12%=425.04 Pay = 500 + 425.04 = 925.04. 925.04 > 925.00
Munster
difference between rational and irrational numbers
Arundhati Reply
When traveling to Great Britain, Bethany exchanged $602 US dollars into £515 British pounds. How many pounds did she receive for each US dollar?
Jakoiya Reply
how to reduced echelon form
Solomon Reply
Jazmine trained for 3 hours on Saturday. She ran 8 miles and then biked 24 miles. Her biking speed is 4 mph faster than her running speed. What is her running speed?
Zack Reply
d=r×t the equation would be 8/r+24/r+4=3 worked out
Sheirtina
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask