<< Chapter < Page Chapter >> Page >

Why are the chemicals able to produce a unique potential difference? Quantum mechanical descriptions of molecules, which take into account the types of atoms and numbers of electrons in them, are able to predict the energy states they can have and the energies of reactions between them.

In the case of a lead-acid battery, an energy of 2 eV is given to each electron sent to the anode. Voltage is defined as the electrical potential energy divided by charge: V = P E q size 12{V= { {P rSub { size 8{E} } } over {q} } } {} . An electron volt is the energy given to a single electron by a voltage of 1 V. So the voltage here is 2 V, since 2 eV is given to each electron. It is the energy produced in each molecular reaction that produces the voltage. A different reaction produces a different energy and, hence, a different voltage.

Terminal voltage

The voltage output of a device is measured across its terminals and, thus, is called its terminal voltage     V size 12{V} {} . Terminal voltage is given by

V = emf Ir , size 12{V="emf" - ital "Ir"} {}

where r size 12{r} {} is the internal resistance and I size 12{I} {} is the current flowing at the time of the measurement.

I size 12{I} {} is positive if current flows away from the positive terminal, as shown in [link] . You can see that the larger the current, the smaller the terminal voltage. And it is likewise true that the larger the internal resistance, the smaller the terminal voltage.

Suppose a load resistance R load size 12{R rSub { size 8{"load"} } } {} is connected to a voltage source, as in [link] . Since the resistances are in series, the total resistance in the circuit is R load + r size 12{R rSub { size 8{"load"} } +r} {} . Thus the current is given by Ohm’s law to be

I = emf R load + r . size 12{I= { {"emf"} over {R rSub { size 8{"load"} } +r} } } {}
This schematic drawing of an electrical circuit shows an e m f, labeled as script E, driving a current through a resistive load R sub load and through the internal resistance r of the voltage source. The current is shown flowing in a clockwise direction from the positive end of the source.
Schematic of a voltage source and its load R load size 12{R rSub { size 8{"load"} } } {} . Since the internal resistance r size 12{r} {} is in series with the load, it can significantly affect the terminal voltage and current delivered to the load. (Note that the script E stands for emf.)

We see from this expression that the smaller the internal resistance r size 12{r} {} , the greater the current the voltage source supplies to its load R load size 12{R rSub { size 8{"load"} } } {} . As batteries are depleted, r size 12{r} {} increases. If r size 12{r} {} becomes a significant fraction of the load resistance, then the current is significantly reduced, as the following example illustrates.

Calculating terminal voltage, power dissipation, current, and resistance: terminal voltage and load

A certain battery has a 12.0-V emf and an internal resistance of 0 . 100 Ω size 12{0 "." "100" %OMEGA } {} . (a) Calculate its terminal voltage when connected to a 10.0- Ω size 12{"10" "." 0- %OMEGA } {} load. (b) What is the terminal voltage when connected to a 0 . 500- Ω size 12{0 "." "500-" %OMEGA } {} load? (c) What power does the 0 . 500- Ω size 12{0 "." "500-" %OMEGA } {} load dissipate? (d) If the internal resistance grows to 0 . 500 Ω size 12{0 "." "500 " %OMEGA } {} , find the current, terminal voltage, and power dissipated by a 0 . 500- Ω size 12{0 "." "500-" %OMEGA } {} load.

Strategy

The analysis above gave an expression for current when internal resistance is taken into account. Once the current is found, the terminal voltage can be calculated using the equation V = emf Ir size 12{V="emf" - ital "Ir"} {} . Once current is found, the power dissipated by a resistor can also be found.

Solution for (a)

Entering the given values for the emf, load resistance, and internal resistance into the expression above yields

I = emf R load + r = 12 . 0 V 10 . 1 Ω = 1 . 188 A . size 12{I= { {"emf"} over {R rSub { size 8{"load"} } +r} } = { {"12" "." 0" V"} over {"10" "." "1 " %OMEGA } } =1 "." "188"" A"} {}

Enter the known values into the equation V = emf Ir size 12{V="emf" - ital "Ir"} {} to get the terminal voltage:

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask