<< Chapter < Page Chapter >> Page >
A two-dimensional view of a dam with dimensions L and h is shown. Force F at h is shown by a horizontal arrow. The force F exerted by water on the dam is F equals average pressure p bar into area A and pressure in turn is average height h bar into density rho into acceleration due to gravity g.
The dam must withstand the force exerted against it by the water it retains. This force is small compared with the weight of the water behind the dam.

Atmospheric pressure is another example of pressure due to the weight of a fluid, in this case due to the weight of air above a given height. The atmospheric pressure at the Earth’s surface varies a little due to the large-scale flow of the atmosphere induced by the Earth’s rotation (this creates weather “highs” and “lows”). However, the average pressure at sea level is given by the standard atmospheric pressure P atm size 12{P rSub { size 8{"atm"} } } {} , measured to be

1 atmosphere (atm) = P atm = 1.01 × 10 5 N/m 2 = 101 kPa . size 12{1`"atmosphere"` \( "atm" \) =P rSub { size 8{"atm"} } =1 "." "01" times "10" rSup { size 8{5} } `"N/m" rSup { size 8{2} } ="101"`"kPa"} {}

This relationship means that, on average, at sea level, a column of air above 1.00 m 2 of the Earth’s surface has a weight of 1.01 × 10 5 N size 12{1 "." "01" times "10" rSup { size 8{5} } `N} {} , equivalent to 1 atm . (See [link] .)

Figure shows a column of air exerting a weight of one point zero one times ten to the power five newtons on a rectangular patch of ground of one square meter cross section.
Atmospheric pressure at sea level averages 1 . 01 × 10 5 Pa size 12{1 "." "01" times "10" rSup { size 8{5} } `"Pa"} {} (equivalent to 1 atm), since the column of air over this 1 m 2 size 12{1`m rSup { size 8{2} } } {} , extending to the top of the atmosphere, weighs 1 . 01 × 10 5 N size 12{1 "." "01" times "10" rSup { size 8{5} } " N"} {} .

Calculating average density: how dense is the air?

Calculate the average density of the atmosphere, given that it extends to an altitude of 120 km. Compare this density with that of air listed in [link] .

Strategy

If we solve P = hρg size 12{P=hρg} {} for density, we see that

ρ ¯ = P hg . size 12{ { bar {ρ}}= { {P} over { ital "hg"} } } {}

We then take P size 12{P} {} to be atmospheric pressure, h size 12{h} {} is given, and g size 12{g} {} is known, and so we can use this to calculate ρ ¯ size 12{ { bar {ρ}}} {} .

Solution

Entering known values into the expression for ρ ¯ size 12{ { bar {ρ}}} {} yields

ρ ¯ = 1 . 01 × 10 5 N/m 2 ( 120 × 10 3 m ) ( 9 . 80 m/s 2 ) = 8 . 59 × 10 2 kg/m 3 . size 12{ { bar {ρ}}= { {1 "." "01" times "10" rSup { size 8{5} } `"N/m" rSup { size 8{2} } } over { \( "120" times "10" rSup { size 8{3} } `m \) \( 9 "." "80"`"m/s" rSup { size 8{2} } \) } } =8 "." "59" times "10" rSup { size 8{ - 2} } `"kg/m" rSup { size 8{3} } } {}

Discussion

This result is the average density of air between the Earth’s surface and the top of the Earth’s atmosphere, which essentially ends at 120 km. The density of air at sea level is given in [link] as 1 . 29 kg/m 3 size 12{1 "." "29"`"kg/m" rSup { size 8{3} } } {} —about 15 times its average value. Because air is so compressible, its density has its highest value near the Earth’s surface and declines rapidly with altitude.

Got questions? Get instant answers now!

Calculating depth below the surface of water: what depth of water creates the same pressure as the entire atmosphere?

Calculate the depth below the surface of water at which the pressure due to the weight of the water equals 1.00 atm.

Strategy

We begin by solving the equation P = hρg size 12{P=hρg} {} for depth h size 12{h} {} :

h = P ρg . size 12{h= { {P} over {ρg} } } {}

Then we take P size 12{P} {} to be 1.00 atm and ρ size 12{ρ} {} to be the density of the water that creates the pressure.

Solution

Entering the known values into the expression for h size 12{h} {} gives

h = 1 . 01 × 10 5 N/m 2 ( 1 . 00 × 10 3 kg/m 3 ) ( 9 . 80 m/s 2 ) = 10 . 3 m . size 12{h= { {1 "." "01" times "10" rSup { size 8{5} } `"N/m" rSup { size 8{2} } } over { \( 1 "." "00" times "10" rSup { size 8{3} } `"kg/m" rSup { size 8{3} } \) \( 9 "." "80"`"m/s" rSup { size 8{2} } \) } } ="10" "." 3`m} {}

Discussion

Just 10.3 m of water creates the same pressure as 120 km of air. Since water is nearly incompressible, we can neglect any change in its density over this depth.

Got questions? Get instant answers now!

What do you suppose is the total pressure at a depth of 10.3 m in a swimming pool? Does the atmospheric pressure on the water’s surface affect the pressure below? The answer is yes. This seems only logical, since both the water’s weight and the atmosphere’s weight must be supported. So the total pressure at a depth of 10.3 m is 2 atm—half from the water above and half from the air above. We shall see in Pascal’s Principle that fluid pressures always add in this way.

Section summary

  • Pressure is the weight of the fluid mg size 12{ ital "mg"} {} divided by the area A size 12{A} {} supporting it (the area of the bottom of the container):
    P = mg A . size 12{P= { { ital "mg"} over {A} } } {}
  • Pressure due to the weight of a liquid is given by
    P = hρg , size 12{P=hρg} {}

    where P size 12{P} {} is the pressure, h size 12{h} {} is the height of the liquid, ρ size 12{ρ} {} is the density of the liquid, and g size 12{g} {} is the acceleration due to gravity.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask