<< Chapter < Page Chapter >> Page >

The fact that nuclear forces are very strong is responsible for the very large energies emitted in nuclear decay. During decay, the forces do work, and since work is force times the distance ( W = Fd cos θ size 12{W= ital "Fd""cos"θ} {} ), a large force can result in a large emitted energy. In fact, we know that there are two distinct nuclear forces because of the different types of nuclear decay—the strong nuclear force is responsible for α size 12{α} {} decay, while the weak nuclear force is responsible for β size 12{β} {} decay.

The many stable and unstable nuclei we have explored, and the hundreds we have not discussed, can be arranged in a table called the chart of the nuclides    , a simplified version of which is shown in [link] . Nuclides are located on a plot of N size 12{N} {} versus Z size 12{Z} {} . Examination of a detailed chart of the nuclides reveals patterns in the characteristics of nuclei, such as stability, abundance, and types of decay, analogous to but more complex than the systematics in the periodic table of the elements.

A chart of nuclides is shown with x axis labeled as number of protons or atomic number with range zero to one hundred ten and y axis labeled as number of neutrons with range zero to one hundred sixty. A straight dashed line is shown for equal atomic number and number of nuclides. A number of points are plotted above the dashed line. The region up to atomic number eighty and neutron number one hundred thirty is shown as stable nuclei and above this region is unstable nuclei.
Simplified chart of the nuclides, a graph of N size 12{N} {} versus Z size 12{Z} {} for known nuclides. The patterns of stable and unstable nuclides reveal characteristics of the nuclear forces. The dashed line is for N = Z size 12{N=Z} {} . Numbers along diagonals are mass numbers A size 12{A} {} .

In principle, a nucleus can have any combination of protons and neutrons, but [link] shows a definite pattern for those that are stable. For low-mass nuclei, there is a strong tendency for N size 12{N} {} and Z size 12{Z} {} to be nearly equal. This means that the nuclear force is more attractive when N = Z size 12{N=Z} {} . More detailed examination reveals greater stability when N size 12{N} {} and Z size 12{Z} {} are even numbers—nuclear forces are more attractive when neutrons and protons are in pairs. For increasingly higher masses, there are progressively more neutrons than protons in stable nuclei. This is due to the ever-growing repulsion between protons. Since nuclear forces are short ranged, and the Coulomb force is long ranged, an excess of neutrons keeps the protons a little farther apart, reducing Coulomb repulsion. Decay modes of nuclides out of the region of stability consistently produce nuclides closer to the region of stability. There are more stable nuclei having certain numbers of protons and neutrons, called magic numbers    . Magic numbers indicate a shell structure for the nucleus in which closed shells are more stable. Nuclear shell theory has been very successful in explaining nuclear energy levels, nuclear decay, and the greater stability of nuclei with closed shells. We have been producing ever-heavier transuranic elements since the early 1940s, and we have now produced the element with Z = 118 size 12{Z="118"} {} . There are theoretical predictions of an island of relative stability for nuclei with such high Z size 12{Z} {} s.

Portrait of Maria Goeppert Mayer
The German-born American physicist Maria Goeppert Mayer (1906–1972) shared the 1963 Nobel Prize in physics with J. Jensen for the creation of the nuclear shell model. This successful nuclear model has nucleons filling shells analogous to electron shells in atoms. It was inspired by patterns observed in nuclear properties. (credit: Nobel Foundation via Wikimedia Commons)

Section summary

  • Two particles, both called nucleons, are found inside nuclei. The two types of nucleons are protons and neutrons; they are very similar, except that the proton is positively charged while the neutron is neutral. Some of their characteristics are given in [link] and compared with those of the electron. A mass unit convenient to atomic and nuclear processes is the unified atomic mass unit (u), defined to be
    1 u = 1.6605 × 10 27 kg = 931.46 MeV / c 2 .
  • A nuclide is a specific combination of protons and neutrons, denoted by
    Z A X N or simply A X, size 12{"" lSup { size 8{A} } X} {}
    Z size 12{Z} {} is the number of protons or atomic number, X is the symbol for the element, N size 12{N} {} is the number of neutrons, and A size 12{A} {} is the mass number or the total number of protons and neutrons,
    A = N + Z . size 12{A=N+Z} {}
  • Nuclides having the same Z size 12{Z} {} but different N size 12{N} {} are isotopes of the same element.
  • The radius of a nucleus, r size 12{r} {} , is approximately
    r = r 0 A 1 / 3 ,
    where r 0 = 1.2 fm . Nuclear volumes are proportional to A size 12{A} {} . There are two nuclear forces, the weak and the strong. Systematics in nuclear stability seen on the chart of the nuclides indicate that there are shell closures in nuclei for values of Z size 12{Z} {} and N size 12{N} {} equal to the magic numbers, which correspond to highly stable nuclei.

Conceptual questions

The weak and strong nuclear forces are basic to the structure of matter. Why we do not experience them directly?

Got questions? Get instant answers now!

Define and make clear distinctions between the terms neutron, nucleon, nucleus, nuclide, and neutrino.

Got questions? Get instant answers now!

What are isotopes? Why do different isotopes of the same element have similar chemistries?

Got questions? Get instant answers now!

Problems&Exercises

Verify that a 2 . 3 × 10 17 kg size 12{2 "." 3 times "10" rSup { size 8{"17"} } "kg"} {} mass of water at normal density would make a cube 60 km on a side, as claimed in [link] . (This mass at nuclear density would make a cube 1.0 m on a side.)

m = ρV = ρd 3 a = m ρ 1/3 = 2.3 × 10 17 kg 1000 kg/m 3 1 3 = 61 × 10 3 m = 61 km
Got questions? Get instant answers now!

Find the length of a side of a cube having a mass of 1.0 kg and the density of nuclear matter, taking this to be 2 . 3 × 10 17 kg/m 3 size 12{2 "." 3´"10" rSup { size 8{"17"} } " kg/m" rSup { size 8{3} } } {} .

Got questions? Get instant answers now!

What is the radius of an α size 12{α} {} particle?

1.9 fm size 12{1 "." 9" fm"} {}

Got questions? Get instant answers now!

Find the radius of a 238 Pu size 12{"" lSup { size 8{"238"} } "Pu"} {} nucleus. 238 Pu size 12{"" lSup { size 8{"238"} } "Pu"} {} is a manufactured nuclide that is used as a power source on some space probes.

Got questions? Get instant answers now!

(a) Calculate the radius of 58 Ni size 12{"" lSup { size 8{"58"} } "Ni"} {} , one of the most tightly bound stable nuclei.

(b) What is the ratio of the radius of 58 Ni size 12{"" lSup { size 8{"58"} } "Ni"} {} to that of 258 Ha size 12{"" lSup { size 8{"258"} } "Ha"} {} , one of the largest nuclei ever made? Note that the radius of the largest nucleus is still much smaller than the size of an atom.

(a) 4.6 fm size 12{4 "." "6 fm"} {}

(b) 0 . 61 to 1 size 12{0 "." "61 to 1"} {}

Got questions? Get instant answers now!

The unified atomic mass unit is defined to be 1 u = 1 . 6605 × 10 −27 kg size 12{1" u"=1 "." "6605"×"10" rSup { size 8{-"27"} } "kg"} {} . Verify that this amount of mass converted to energy yields 931.5 MeV. Note that you must use four-digit or better values for c size 12{c} {} and q e size 12{ lline q rSub { size 8{e} } rline } {} .

Got questions? Get instant answers now!

What is the ratio of the velocity of a β size 12{β} {} particle to that of an α size 12{α} {} particle, if they have the same nonrelativistic kinetic energy?

85 . 4 to 1 size 12{"85" "." "4 to 1"} {}

Got questions? Get instant answers now!

If a 1.50-cm-thick piece of lead can absorb 90.0% of the γ size 12{γ} {} rays from a radioactive source, how many centimeters of lead are needed to absorb all but 0.100% of the γ size 12{γ} {} rays?

Got questions? Get instant answers now!

The detail observable using a probe is limited by its wavelength. Calculate the energy of a γ size 12{γ} {} -ray photon that has a wavelength of 1 × 10 16 m size 12{1 times "10" rSup { size 8{ - "16"} } m} {} , small enough to detect details about one-tenth the size of a nucleon. Note that a photon having this energy is difficult to produce and interacts poorly with the nucleus, limiting the practicability of this probe.

12.4 GeV size 12{"12" "." "4 GeV"} {}

Got questions? Get instant answers now!

(a) Show that if you assume the average nucleus is spherical with a radius r = r 0 A 1 / 3 size 12{r=r rSub { size 8{0} } A rSup { size 8{1/3} } } {} , and with a mass of A size 12{A} {} u, then its density is independent of A size 12{A} {} .

(b) Calculate that density in u/fm 3 size 12{"u/fm" rSup { size 8{3} } } {} and kg/m 3 size 12{"kg/m" rSup { size 8{3} } } {} , and compare your results with those found in [link] for 56 Fe size 12{"" lSup { size 8{"56"} } "Fe"} {} .

Got questions? Get instant answers now!

What is the ratio of the velocity of a 5.00-MeV β size 12{β} {} ray to that of an α size 12{β} {} particle with the same kinetic energy? This should confirm that β size 12{β} {} s travel much faster than α size 12{β} {} s even when relativity is taken into consideration. (See also [link] .)

19.3 to 1

Got questions? Get instant answers now!

(a) What is the kinetic energy in MeV of a β size 12{β} {} ray that is traveling at 0.998 c ? This gives some idea of how energetic a β size 12{β} {} ray must be to travel at nearly the same speed as a γ ray. (b) What is the velocity of the γ ray relative to the β size 12{β} {} ray?

Got questions? Get instant answers now!

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask