<< Chapter < Page Chapter >> Page >

Entropy increases in a coin toss

Suppose you toss 100 coins starting with 60 heads and 40 tails, and you get the most likely result, 50 heads and 50 tails. What is the change in entropy?

Strategy

Noting that the number of microstates is labeled W size 12{W} {} in [link] for the 100-coin toss, we can use Δ S = S f S i = k ln W f - k ln W i size 12{DS=S rSub { size 8{f} } -S rSub { size 8{i} } =k" ln"W rSub { size 8{f} } +- k"ln"W rSub { size 8{i} } } {} to calculate the change in entropy.

Solution

The change in entropy is

Δ S = S f S i = k ln W f k ln W i , size 12{DS=S rSub { size 8{f} } -S rSub { size 8{i} } =k" ln"W rSub { size 8{f} } +- k"ln"W rSub { size 8{i} } } {}

where the subscript i stands for the initial 60 heads and 40 tails state, and the subscript f for the final 50 heads and 50 tails state. Substituting the values for W size 12{W} {} from [link] gives

Δ S = ( 1 . 38 × 10 23 J/K ) [ ln ( 1 . 0 × 10 29 ) ln ( 1 . 4 × 10 28 ) ] = 2.7 × 10 23 J/K alignl { stack { size 12{DS= \( 1 "." "38"´"10" rSup { size 8{-"23"} } " J/K" \) \[ "ln" \( 1 "." 0´"10" rSup { size 8{"29"} } \) +- "ln " \( 1 "." 4´"10" rSup { size 8{"28"} } \) \] } {} #" =2" "." 7´"10" rSup { size 8{ +- "23"} } " J/K" {} } } {}

Discussion

This increase in entropy means we have moved to a less orderly situation. It is not impossible for further tosses to produce the initial state of 60 heads and 40 tails, but it is less likely. There is about a 1 in 90 chance for that decrease in entropy ( 2 . 7 × 10 23 J/K size 12{ +- 2 "." 7´"10" rSup { size 8{ +- "23"} } " J/K"} {} ) to occur. If we calculate the decrease in entropy to move to the most orderly state, we get Δ S = 92 × 10 23 J/K size 12{DS= +- "92"´"10" rSup { size 8{ +- "23"} } " J/K"} {} . There is about a 1  in  10 30 size 12{1" in ""10" rSup { size 8{"30"} } } {} chance of this change occurring. So while very small decreases in entropy are unlikely, slightly greater decreases are impossibly unlikely. These probabilities imply, again, that for a macroscopic system, a decrease in entropy is impossible. For example, for heat transfer to occur spontaneously from 1.00 kg of C size 12{0ºC} {} ice to its C size 12{0°C} {} environment, there would be a decrease in entropy of 1 . 22 × 10 3 J/K size 12{1 "." "22" times "10" rSup { size 8{3} } " J/K"} {} . Given that a Δ S  of 10 21 J/K size 12{DS" of 10" rSup { size 8{ +- "21"} } " J/K"} {} corresponds to about a 1  in  10 30 chance, a decrease of this size ( 10 3 J/K size 12{"10" rSup { size 8{3} } " J/K"} {} ) is an utter impossibility. Even for a milligram of melted ice to spontaneously refreeze is impossible.

Got questions? Get instant answers now!

Problem-solving strategies for entropy

  1. Examine the situation to determine if entropy is involved.
  2. Identify the system of interest and draw a labeled diagram of the system showing energy flow.
  3. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is useful.
  4. Make a list of what is given or can be inferred from the problem as stated (identify the knowns). You must carefully identify the heat transfer, if any, and the temperature at which the process takes place. It is also important to identify the initial and final states.
  5. Solve the appropriate equation for the quantity to be determined (the unknown). Note that the change in entropy can be determined between any states by calculating it for a reversible process.
  6. Substitute the known value along with their units into the appropriate equation, and obtain numerical solutions complete with units.
  7. To see if it is reasonable: Does it make sense? For example, total entropy should increase for any real process or be constant for a reversible process. Disordered states should be more probable and have greater entropy than ordered states.

Section summary

  • Disorder is far more likely than order, which can be seen statistically.
  • The entropy of a system in a given state (a macrostate) can be written as
    S = k ln W ,
    where k = 1.38 × 10 –23 J/K is Boltzmann’s constant, and ln W is the natural logarithm of the number of microstates W corresponding to the given macrostate.

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask