<< Chapter < Page Chapter >> Page >

Entropy increases in a coin toss

Suppose you toss 100 coins starting with 60 heads and 40 tails, and you get the most likely result, 50 heads and 50 tails. What is the change in entropy?

Strategy

Noting that the number of microstates is labeled W size 12{W} {} in [link] for the 100-coin toss, we can use Δ S = S f S i = k ln W f - k ln W i size 12{DS=S rSub { size 8{f} } -S rSub { size 8{i} } =k" ln"W rSub { size 8{f} } +- k"ln"W rSub { size 8{i} } } {} to calculate the change in entropy.

Solution

The change in entropy is

Δ S = S f S i = k ln W f k ln W i , size 12{DS=S rSub { size 8{f} } -S rSub { size 8{i} } =k" ln"W rSub { size 8{f} } +- k"ln"W rSub { size 8{i} } } {}

where the subscript i stands for the initial 60 heads and 40 tails state, and the subscript f for the final 50 heads and 50 tails state. Substituting the values for W size 12{W} {} from [link] gives

Δ S = ( 1 . 38 × 10 23 J/K ) [ ln ( 1 . 0 × 10 29 ) ln ( 1 . 4 × 10 28 ) ] = 2.7 × 10 23 J/K alignl { stack { size 12{DS= \( 1 "." "38"´"10" rSup { size 8{-"23"} } " J/K" \) \[ "ln" \( 1 "." 0´"10" rSup { size 8{"29"} } \) +- "ln " \( 1 "." 4´"10" rSup { size 8{"28"} } \) \] } {} #" =2" "." 7´"10" rSup { size 8{ +- "23"} } " J/K" {} } } {}

Discussion

This increase in entropy means we have moved to a less orderly situation. It is not impossible for further tosses to produce the initial state of 60 heads and 40 tails, but it is less likely. There is about a 1 in 90 chance for that decrease in entropy ( 2 . 7 × 10 23 J/K size 12{ +- 2 "." 7´"10" rSup { size 8{ +- "23"} } " J/K"} {} ) to occur. If we calculate the decrease in entropy to move to the most orderly state, we get Δ S = 92 × 10 23 J/K size 12{DS= +- "92"´"10" rSup { size 8{ +- "23"} } " J/K"} {} . There is about a 1  in  10 30 size 12{1" in ""10" rSup { size 8{"30"} } } {} chance of this change occurring. So while very small decreases in entropy are unlikely, slightly greater decreases are impossibly unlikely. These probabilities imply, again, that for a macroscopic system, a decrease in entropy is impossible. For example, for heat transfer to occur spontaneously from 1.00 kg of C size 12{0ºC} {} ice to its C size 12{0°C} {} environment, there would be a decrease in entropy of 1 . 22 × 10 3 J/K size 12{1 "." "22" times "10" rSup { size 8{3} } " J/K"} {} . Given that a Δ S  of 10 21 J/K size 12{DS" of 10" rSup { size 8{ +- "21"} } " J/K"} {} corresponds to about a 1  in  10 30 chance, a decrease of this size ( 10 3 J/K size 12{"10" rSup { size 8{3} } " J/K"} {} ) is an utter impossibility. Even for a milligram of melted ice to spontaneously refreeze is impossible.

Got questions? Get instant answers now!

Problem-solving strategies for entropy

  1. Examine the situation to determine if entropy is involved.
  2. Identify the system of interest and draw a labeled diagram of the system showing energy flow.
  3. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is useful.
  4. Make a list of what is given or can be inferred from the problem as stated (identify the knowns). You must carefully identify the heat transfer, if any, and the temperature at which the process takes place. It is also important to identify the initial and final states.
  5. Solve the appropriate equation for the quantity to be determined (the unknown). Note that the change in entropy can be determined between any states by calculating it for a reversible process.
  6. Substitute the known value along with their units into the appropriate equation, and obtain numerical solutions complete with units.
  7. To see if it is reasonable: Does it make sense? For example, total entropy should increase for any real process or be constant for a reversible process. Disordered states should be more probable and have greater entropy than ordered states.

Section summary

  • Disorder is far more likely than order, which can be seen statistically.
  • The entropy of a system in a given state (a macrostate) can be written as
    S = k ln W ,
    where k = 1.38 × 10 –23 J/K is Boltzmann’s constant, and ln W is the natural logarithm of the number of microstates W corresponding to the given macrostate.

Questions & Answers

start new n questions too
Emmaunella Reply
summarize halerambos & holbon
David Reply
the Three stages of Auguste Comte
Clementina Reply
what are agents of socialization
Antonio Reply
sociology of education
Nuhu Reply
definition of sociology of education
Nuhu
definition of sociology of education
Emmaunella
what is culture
Abdulrahim Reply
shared beliefs, values, and practices
AI-Robot
What are the two type of scientific method
ogunniran Reply
I'm willing to join you
Aceng Reply
what are the scientific method of sociology
Man
what is socialization
ogunniran Reply
the process wherein people come to understand societal norms and expectations, to accept society's beliefs, and to be aware of societal values
AI-Robot
scientific method in doing research
ogunniran
defimition of sickness in afica
Anita
Cosmology
ogunniran
Hmmm
ogunniran
list and explain the terms that found in society
REMMY Reply
list and explain the terms that found in society
Mukhtar
what are the agents of socialization
Antonio
Family Peer group Institution
Abdulwajud
I mean the definition
Antonio
ways of perceived deviance indifferent society
Naomi Reply
reasons of joining groups
SAM
to bring development to the nation at large
Hyellafiya
entails of consultative and consensus building from others
Gadama
World first Sociologist?
Abu
What is evolutionary model
Muhammad Reply
Evolution models refer to mathematical and computational representations of the processes involved in biological evolution. These models aim to simulate and understand how species change over time through mechanisms such as natural selection, genetic drift, and mutation. Evolutionary models can be u
faruk
what are the modern trends in religious behaviours
Selekeye Reply
what are social norms
Daniel Reply
shared standards of acceptable behavior by the group or appropriate behavior in a particular institution or those behaviors that are acceptable in a society
Lucius
that is how i understood it
Lucius
examples of societal norms
Diamond
Discuss the characteristics of the research located within positivist and the interpretivist paradigm
Tariro Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask