<< Chapter < Page Chapter >> Page >

Relating E size 12{E} {} -field and B size 12{B} {} -field strengths

There is a relationship between the E size 12{E} {} - and B size 12{B} {} -field strengths in an electromagnetic wave. This can be understood by again considering the antenna just described. The stronger the E size 12{E} {} -field created by a separation of charge, the greater the current and, hence, the greater the B size 12{B} {} -field created.

Since current is directly proportional to voltage (Ohm’s law) and voltage is directly proportional to E size 12{E} {} -field strength, the two should be directly proportional. It can be shown that the magnitudes of the fields do have a constant ratio, equal to the speed of light. That is,

E B = c size 12{ { {E} over {B} } =c} {}

is the ratio of E size 12{E} {} -field strength to B size 12{B} {} -field strength in any electromagnetic wave. This is true at all times and at all locations in space. A simple and elegant result.

Calculating B size 12{B} {} -field strength in an electromagnetic wave

What is the maximum strength of the B size 12{B} {} -field in an electromagnetic wave that has a maximum E size 12{E} {} -field strength of 1000 V/m size 12{"1000" {V} slash {m} } {} ?

Strategy

To find the B size 12{B} {} -field strength, we rearrange the above equation to solve for B size 12{B} {} , yielding

B = E c . size 12{B= { {E} over {c} } } {}

Solution

We are given E size 12{E} {} , and c size 12{c} {} is the speed of light. Entering these into the expression for B size 12{B} {} yields

B = 1000 V/m 3 . 00 × 10 8 m/s = 3 . 33 × 10 - 6 T , size 12{B = { {"1000 V/m"} over {3 "." "00 " times " 10" rSup { size 8{8} } " m/s"} } =" 3" "." "33" times "10" rSup { size 8{ +- 6} } " T"} {}

Where T stands for Tesla, a measure of magnetic field strength.

Discussion

The B size 12{B} {} -field strength is less than a tenth of the Earth’s admittedly weak magnetic field. This means that a relatively strong electric field of 1000 V/m is accompanied by a relatively weak magnetic field. Note that as this wave spreads out, say with distance from an antenna, its field strengths become progressively weaker.

Got questions? Get instant answers now!

The result of this example is consistent with the statement made in the module Maxwell’s Equations: Electromagnetic Waves Predicted and Observed that changing electric fields create relatively weak magnetic fields. They can be detected in electromagnetic waves, however, by taking advantage of the phenomenon of resonance, as Hertz did. A system with the same natural frequency as the electromagnetic wave can be made to oscillate. All radio and TV receivers use this principle to pick up and then amplify weak electromagnetic waves, while rejecting all others not at their resonant frequency.

Take-home experiment: antennas

For your TV or radio at home, identify the antenna, and sketch its shape. If you don’t have cable, you might have an outdoor or indoor TV antenna. Estimate its size. If the TV signal is between 60 and 216 MHz for basic channels, then what is the wavelength of those EM waves?

Try tuning the radio and note the small range of frequencies at which a reasonable signal for that station is received. (This is easier with digital readout.) If you have a car with a radio and extendable antenna, note the quality of reception as the length of the antenna is changed.

Phet explorations: radio waves and electromagnetic fields

Broadcast radio waves from KPhET. Wiggle the transmitter electron manually or have it oscillate automatically. Display the field as a curve or vectors. The strip chart shows the electron positions at the transmitter and at the receiver.

Radio Waves and Electromagnetic Fields

Section summary

  • Electromagnetic waves are created by oscillating charges (which radiate whenever accelerated) and have the same frequency as the oscillation.
  • Since the electric and magnetic fields in most electromagnetic waves are perpendicular to the direction in which the wave moves, it is ordinarily a transverse wave.
  • The strengths of the electric and magnetic parts of the wave are related by
    E B = c , size 12{ { {E} over {B} } = ital " c"} {}

    which implies that the magnetic field B size 12{B} {} is very weak relative to the electric field E size 12{E} {} .

Conceptual questions

The direction of the electric field shown in each part of [link] is that produced by the charge distribution in the wire. Justify the direction shown in each part, using the Coulomb force law and the definition of E = F / q size 12{E= {F} slash {q} } {} , where q size 12{q} {} is a positive test charge.

Got questions? Get instant answers now!

Is the direction of the magnetic field shown in [link] (a) consistent with the right-hand rule for current (RHR-2) in the direction shown in the figure?

Got questions? Get instant answers now!

Why is the direction of the current shown in each part of [link] opposite to the electric field produced by the wire’s charge separation?

Got questions? Get instant answers now!

In which situation shown in [link] will the electromagnetic wave be more successful in inducing a current in the wire? Explain.

Part a of the diagram shows an electromagnetic wave approaching a long straight vertical wire. The wave is shown with the variation of two components E and B. E is a sine wave in vertical plane with small arrows showing the vibrations of particles in the plane. B is a sine wave in a horizontal plane perpendicular to the E wave. The B wave has arrows to show the vibrations of particles in the plane. The waves are shown intersecting each other at the junction of the planes because E and B are perpendicular to each other. The direction of propagation of wave is shown perpendicular to E and B waves. Part b of the diagram shows an electromagnetic wave approaching a long straight vertical wire. The wave is shown with the variation of two components E and B. E is a sine wave in horizontal plane with small arrows showing the vibrations of particles in the plane. B is a sine wave in a vertical plane perpendicular to the E wave. The B wave has arrows to show the vibrations of particles in the plane. The waves are shown intersecting each other at the junction of the planes because E and B are perpendicular to each other. The direction of propagation of wave is shown perpendicular to E and B waves.
Electromagnetic waves approaching long straight wires.
Got questions? Get instant answers now!

In which situation shown in [link] will the electromagnetic wave be more successful in inducing a current in the loop? Explain.

Part a of the diagram shows an electromagnetic wave approaching a receiver loop connected to a tuner. The wave is shown with the variation of two components E and B. E is a sine wave in vertical plane with small arrows showing the vibrations of particles in the plane. B is a sine wave in a horizontal plane perpendicular to the E wave. The B wave has arrows to show the vibrations of particles in the plane. The waves are shown intersecting each other at the junction of the planes because E and B are perpendicular to each other. The direction of propagation of wave is shown perpendicular to E and B waves. Part b of the diagram shows an electromagnetic wave approaching a receiver loop connected to a tuner. The wave is shown with the variation of two components E and B. E is a sine wave in horizontal plane with small arrows showing the vibrations of particles in the plane. B is a sine wave in a vertical plane perpendicular to the E wave. The B wave has arrows to show the vibrations of particles in the plane. The waves are shown intersecting each other at the junction of the planes because E and B are perpendicular to each other. The direction of propagation of wave is shown perpendicular to E and B waves.
Electromagnetic waves approaching a wire loop.
Got questions? Get instant answers now!

Should the straight wire antenna of a radio be vertical or horizontal to best receive radio waves broadcast by a vertical transmitter antenna? How should a loop antenna be aligned to best receive the signals? (Note that the direction of the loop that produces the best reception can be used to determine the location of the source. It is used for that purpose in tracking tagged animals in nature studies, for example.)

Got questions? Get instant answers now!

Under what conditions might wires in a DC circuit emit electromagnetic waves?

Got questions? Get instant answers now!

Give an example of interference of electromagnetic waves.

Got questions? Get instant answers now!

[link] shows the interference pattern of two radio antennas broadcasting the same signal. Explain how this is analogous to the interference pattern for sound produced by two speakers. Could this be used to make a directional antenna system that broadcasts preferentially in certain directions? Explain.

The picture shows an overhead view of a radio broadcast antenna sending signals in the form of waves. Two waves are shown in the diagram with concentric circular wave fonts. The crest and trough are marked as bold and dashed circles respectively. The points where the bold circles of the two different waves meet are marked as points of constructive interference. Arrows point outward from the antenna, joining these points. These arrows show the directions of constructive interference.
An overhead view of two radio broadcast antennas sending the same signal, and the interference pattern they produce.
Got questions? Get instant answers now!

Can an antenna be any length? Explain your answer.

Got questions? Get instant answers now!

Problems&Exercises

What is the maximum electric field strength in an electromagnetic wave that has a maximum magnetic field strength of 5 . 00 × 10 4 T size 12{5 "." "00"´"10" rSup { size 8{-4} } " T"} {} (about 10 times the Earth’s)?

150 kV/m

Got questions? Get instant answers now!

The maximum magnetic field strength of an electromagnetic field is 5 × 10 6 T size 12{5 times "10" rSup { size 8{ - 6} } T} {} . Calculate the maximum electric field strength if the wave is traveling in a medium in which the speed of the wave is 0.75 c size 12{c} {} .

Got questions? Get instant answers now!

Verify the units obtained for magnetic field strength B in [link] (using the equation B = E c ) are in fact teslas (T).

Got questions? Get instant answers now!

Questions & Answers

how does the planets on our solar system orbit
cheten Reply
how many Messier objects are there in space
satish Reply
did you g8ve certificate
Richard Reply
what are astronomy
Issan Reply
Astronomy (from Ancient Greek ἀστρονομία (astronomía) 'science that studies the laws of the stars') is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution.
Rafael
vjuvu
Elgoog
what is big bang theory?
Rosemary
what type of activity astronomer do?
Rosemary
No
Richard
the big bang theory is a theory which states that all matter was compressed together in one place the matter got so unstable it exploded releasing All its contents in the form of hydrogen
Roaul
I want to be an astronomer. That's my dream
Astrit
Who named the the whole galaxy?
Shola Reply
solar Univers
GPOWER
what is space
Richard
what is the dark matter
Richard
what are the factors upon which the atmosphere is stratified
Nicholas Reply
is the big bang the sun
Folakemi Reply
no
Sokak
bigbang is the beginning of the universe
Sokak
but thats just a theory
Sokak
nothing will happen, don't worry brother.
Vansh
what does comet means
GANGAIN Reply
these are Rocky substances between mars and jupiter
GANGAIN
Comets are cosmic snowballs of frozen gases , rock and dust that orbit the sun. They are mostly found between the orbits of Venus and Mercury.
Aarya
hllo
John
hi
John
qt rrt
John
r u there
John
hey can anyone guide me abt international astronomy olympiad
sahil
how can we learn right and true ?
Govinda Reply
why the moon is always appear in an elliptical shape
Gatjuol Reply
Because when astroid hit the Earth then a piece of elliptical shape of the earth was separated which is now called moon.
Hemen
what's see level?
lidiya Reply
Did you mean eye sight or sea level
Minal
oh sorry it's sea level
lidiya
according to the theory of astronomers why the moon is always appear in an elliptical orbit?
Gatjuol
hi !!! I am new in astronomy.... I have so many questions in mind .... all of scientists of the word they just give opinion only. but they never think true or false ... i respect all of them... I believes whole universe depending on true ...থিউরি
Govinda
hello
Jackson
hi
Elyana
we're all stars and galaxies a part of sun. how can science prove thx with respect old ancient times picture or books..or anything with respect to present time .but we r a part of that universe
w astronomy and cosmology!
Michele
another theory of universe except big ban
Albash Reply
how was universe born
Asmit Reply
there many theory to born universe but what is the reality of big bang theory to born universe
Asmit
what is the exact value of π?
Nagalakshmi
by big bang
universal
there are many theories regarding this it's on you believe any theory that you think is true ex. eternal inflation theory, oscillation model theory, multiple universe theory the big bang theory etc.
Aarya
I think after Big Bang!
Michele
from where on earth could u observe all the stars during the during the course of an year
Karuna Reply
I think it couldn't possible on earth
Nagalakshmi
in this time i don't Know
Michele
is that so. the question was in the end of this chapter
Karuna
in theory, you could see them all from the equator (though over the course of a year, not at pne time). stars are measured in "declination", which is how far N or S of the equator (90* to -90*). Polaris is the North star, and is ALMOST 90* (+89*). So it would just barely creep over the horizon.
Christopher
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask