<< Chapter < Page Chapter >> Page >
θ = 1 . 22 λ D = x d , size 12{θ=1 "." "22" { {λ} over {D} } = { {x} over {d} } } {}

where d size 12{d} {} is the distance between the specimen and the objective lens, and we have used the small angle approximation (i.e., we have assumed that x size 12{x} {} is much smaller than d size 12{d} {} ), so that tan θ sin θ θ size 12{"tan"θ approx "sin"θ approx θ} {} .

Therefore, the resolving power is

x = 1 . 22 λd D . size 12{x=1 "." "22" { {λd} over {D} } } {}

Another way to look at this is by re-examining the concept of Numerical Aperture ( NA size 12{ ital "NA"} {} ) discussed in Microscopes . There, NA size 12{ ital "NA"} {} is a measure of the maximum acceptance angle at which the fiber will take light and still contain it within the fiber. [link] (b) shows a lens and an object at point P. The NA size 12{ ital "NA"} {} here is a measure of the ability of the lens to gather light and resolve fine detail. The angle subtended by the lens at its focus is defined to be θ = size 12{θ=2α} {} . From the figure and again using the small angle approximation, we can write

sin α = D / 2 d = D 2 d . size 12{"sin"α= { { {D} slash {2} } over {d} } = { {D} over {2d} } } {}

The NA for a lens is NA = n sin α size 12{ ital "NA"=n`"sin"α} {} , where n size 12{n} {} is the index of refraction of the medium between the objective lens and the object at point P.

From this definition for NA size 12{ ital "NA"} {} , we can see that

x = 1 . 22 λd D = 1 . 22 λ 2 sin α = 0.61 λn NA . size 12{x=1 "." "22" { {λd} over {D} } =1 "." "22" { {λ} over {2"sin"α} } =0 "." "61" { {λn} over { ital "NA"} } } {}

In a microscope, NA size 12{ ital "NA"} {} is important because it relates to the resolving power of a lens. A lens with a large NA size 12{ ital "NA"} {} will be able to resolve finer details. Lenses with larger NA size 12{ ital "NA"} {} will also be able to collect more light and so give a brighter image. Another way to describe this situation is that the larger the NA size 12{ ital "NA"} {} , the larger the cone of light that can be brought into the lens, and so more of the diffraction modes will be collected. Thus the microscope has more information to form a clear image, and so its resolving power will be higher.

Part a of the figure shows two small objects arranged vertically a distance x one above the other on the left side of the schematic. On the right side, at a distance lowercase d from the two objects, is a vertical oval shape that represents a convex lens. The middle of the lens is on the horizontal bisector between the two points on the left. Two rays, one from each object on the left, leave the objects and pass through the center of the lens. The distance d is significantly longer than the distance x. Part b of the figure shows a horizontal oval representing a convex lens labeled microscope objective that is a distance lowercase d above a flat surface. The oval’s long axis is of length capital D. A point P is labeled on the plane directly below the center of the lens, and two rays leave this point. One ray extends to the left edge of the lens and the other ray extends to the right edge of the lens. The angle between these rays is labeled acceptance angle theta, and the half angle is labeled alpha. The distance lowercase d is longer than the distance capital D.
(a) Two points separated by at distance x size 12{x} {} and a positioned a distance d size 12{d} {} away from the objective. (credit: Infopro, Wikimedia Commons) (b) Terms and symbols used in discussion of resolving power for a lens and an object at point P. (credit: Infopro, Wikimedia Commons)

One of the consequences of diffraction is that the focal point of a beam has a finite width and intensity distribution. Consider focusing when only considering geometric optics, shown in [link] (a). The focal point is infinitely small with a huge intensity and the capacity to incinerate most samples irrespective of the NA size 12{ ital "NA"} {} of the objective lens. For wave optics, due to diffraction, the focal point spreads to become a focal spot (see [link] (b)) with the size of the spot decreasing with increasing NA size 12{ ital "NA"} {} . Consequently, the intensity in the focal spot increases with increasing NA size 12{ ital "NA"} {} . The higher the NA size 12{ ital "NA"} {} , the greater the chances of photodegrading the specimen. However, the spot never becomes a true point.

The first schematic is labeled geometric optics focus. It shows an edge-on view of a thin lens that is vertical. The lens is represented by a thin ellipse. Two parallel horizontal rays impinge upon the lens from the left. One ray goes through the upper edge of the lens and is deviated downward at about a thirty degree angle below the horizontal. The other ray goes through the lower edge of the lens and is deviated upward at about a thirty degree angle above the horizontal. These two rays cross a point that is labeled focal point. The second schematic is labeled wave optics focus. It is similar to the first schematic, except that the rays do not quite cross at the focal point. Instead, they diverge away from each other at the same angle as they approached each other. The region of closest approach for the lines is called the focal region.
(a) In geometric optics, the focus is a point, but it is not physically possible to produce such a point because it implies infinite intensity. (b) In wave optics, the focus is an extended region.

Section summary

  • Diffraction limits resolution.
  • For a circular aperture, lens, or mirror, the Rayleigh criterion states that two images are just resolvable when the center of the diffraction pattern of one is directly over the first minimum of the diffraction pattern of the other.
  • This occurs for two point objects separated by the angle θ = 1 . 22 λ D size 12{θ=1 "." "22" { {λ} over {D} } } {} , where λ size 12{λ} {} is the wavelength of light (or other electromagnetic radiation) and D size 12{D} {} is the diameter of the aperture, lens, mirror, etc. This equation also gives the angular spreading of a source of light having a diameter D size 12{D} {} .

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask