<< Chapter < Page Chapter >> Page >

Problem-solving strategies for kirchhoff’s rules

  1. Make certain there is a clear circuit diagram on which you can label all known and unknown resistances, emfs, and currents. If a current is unknown, you must assign it a direction. This is necessary for determining the signs of potential changes. If you assign the direction incorrectly, the current will be found to have a negative value—no harm done.
  2. Apply the junction rule to any junction in the circuit. Each time the junction rule is applied, you should get an equation with a current that does not appear in a previous application—if not, then the equation is redundant.
  3. Apply the loop rule to as many loops as needed to solve for the unknowns in the problem. (There must be as many independent equations as unknowns.) To apply the loop rule, you must choose a direction to go around the loop. Then carefully and consistently determine the signs of the potential changes for each element using the four bulleted points discussed above in conjunction with [link] .
  4. Solve the simultaneous equations for the unknowns. This may involve many algebraic steps, requiring careful checking and rechecking.
  5. Check to see whether the answers are reasonable and consistent. The numbers should be of the correct order of magnitude, neither exceedingly large nor vanishingly small. The signs should be reasonable—for example, no resistance should be negative. Check to see that the values obtained satisfy the various equations obtained from applying the rules. The currents should satisfy the junction rule, for example.

The material in this section is correct in theory. We should be able to verify it by making measurements of current and voltage. In fact, some of the devices used to make such measurements are straightforward applications of the principles covered so far and are explored in the next modules. As we shall see, a very basic, even profound, fact results—making a measurement alters the quantity being measured.

Can Kirchhoff’s rules be applied to simple series and parallel circuits or are they restricted for use in more complicated circuits that are not combinations of series and parallel?

Kirchhoff's rules can be applied to any circuit since they are applications to circuits of two conservation laws. Conservation laws are the most broadly applicable principles in physics. It is usually mathematically simpler to use the rules for series and parallel in simpler circuits so we emphasize Kirchhoff’s rules for use in more complicated situations. But the rules for series and parallel can be derived from Kirchhoff’s rules. Moreover, Kirchhoff’s rules can be expanded to devices other than resistors and emfs, such as capacitors, and are one of the basic analysis devices in circuit analysis.

Got questions? Get instant answers now!

Section summary

  • Kirchhoff’s rules can be used to analyze any circuit, simple or complex.
  • Kirchhoff’s first rule—the junction rule: The sum of all currents entering a junction must equal the sum of all currents leaving the junction.
  • Kirchhoff’s second rule—the loop rule: The algebraic sum of changes in potential around any closed circuit path (loop) must be zero.
  • The two rules are based, respectively, on the laws of conservation of charge and energy.
  • When calculating potential and current using Kirchhoff’s rules, a set of conventions must be followed for determining the correct signs of various terms.
  • The simpler series and parallel rules are special cases of Kirchhoff’s rules.

Conceptual questions

Can all of the currents going into the junction in [link] be positive? Explain.

Got questions? Get instant answers now!
The diagram shows a T junction with currents I sub one, I sub two, and I sub three entering the T junction.

Apply the junction rule to junction b in [link] . Is any new information gained by applying the junction rule at e? (In the figure, each emf is represented by script E.)

Got questions? Get instant answers now!
The diagram shows a complex circuit with four voltage sources: E sub one, E sub two, E sub three, E sub four and several resistive loads, wired in two loops and two junctions. Several points on the diagram are marked with letters a through g. The current in each branch is labeled separately.

(a) What is the potential difference going from point a to point b in [link] ? (b) What is the potential difference going from c to b? (c) From e to g? (d) From e to d?

Got questions? Get instant answers now!

Apply the loop rule to loop afedcba in [link] .

Got questions? Get instant answers now!

Apply the loop rule to loops abgefa and cbgedc in [link] .

Got questions? Get instant answers now!

Problem exercises

Apply the loop rule to loop abcdefgha in [link] .

I 2 R 2 + emf 1 I 2 r 1 + I 3 R 3 + I 3 r 2 - emf 2 = 0 size 12{ {underline {-I rSub { size 8{2} } R rSub { size 8{3} } + "emf" rSub { size 8{1} } - ital " I" rSub { size 8{2} } r rSub { size 8{1} } + ital " I" rSub { size 8{3} } r rSub { size 8{3} } + ital " I" rSub { size 8{3} } r rSub { size 8{2} } +- "emf" rSub { size 8{2} } =" 0"}} } {}
Got questions? Get instant answers now!

Apply the loop rule to loop aedcba in [link] .

Got questions? Get instant answers now!

Verify the second equation in [link] by substituting the values found for the currents I 1 size 12{I rSub { size 8{1} } } {} and I 2 size 12{I rSub { size 8{2} } } {} .

Got questions? Get instant answers now!

Verify the third equation in [link] by substituting the values found for the currents I 1 size 12{I rSub { size 8{1} } } {} and I 3 size 12{I rSub { size 8{3} } } {} .

Got questions? Get instant answers now!

Apply the junction rule at point a in [link] .

The diagram shows a complex circuit with four voltage sources E sub one, E sub two, E sub three, E sub four and several resistive loads, wired in two loops and many junctions. Several points on the diagram are marked with letters a through j. The current in each branch is labeled separately.
I 3 = I 1 + I 2 size 12{I rSub { size 8{3} } = ital " I" rSub { size 8{1} } + ital " I" rSub { size 8{2} } } {}
Got questions? Get instant answers now!

Apply the loop rule to loop abcdefghija in [link] .

Got questions? Get instant answers now!

Apply the loop rule to loop akledcba in [link] .

emf 2 - I 2 r 2 - I 2 R 2 + I 1 R 5 + I 1 r 1 - emf 1 + I 1 R 1 = 0 size 12{ {underline { "emf" rSub { size 8{2} } +- ital " I" rSub { size 8{2} } r rSub { size 8{2} } +- ital " I" rSub { size 8{2} } R rSub { size 8{2} } + ital " I" rSub { size 8{1} } R rSub { size 8{5} } +I rSub { size 8{1} } r rSub { size 8{1} } +- "emf" rSub { size 8{1} } + ital " I" rSub { size 8{1} } R rSub { size 8{1} } = 0}} } {}
Got questions? Get instant answers now!

Find the currents flowing in the circuit in [link] . Explicitly show how you follow the steps in the Problem-Solving Strategies for Series and Parallel Resistors .

Got questions? Get instant answers now!

Solve [link] , but use loop abcdefgha instead of loop akledcba. Explicitly show how you follow the steps in the Problem-Solving Strategies for Series and Parallel Resistors .

(a) I 1 = 4.75 A size 12{I rSub { size 8{1} } =4 cdot "75 A"} {}

(b) I 2 = - 3 . 5 A size 12{I rSub { size 8{"2 "} } = +- 3 "." "5 A"} {} {}

(c) I 3 = 8 . 25 A size 12{I rSub { size 8{3} } =8 "." "25"" A"} {}

Got questions? Get instant answers now!

Find the currents flowing in the circuit in [link] .

Got questions? Get instant answers now!

Unreasonable Results

Consider the circuit in [link] , and suppose that the emfs are unknown and the currents are given to be I 1 = 5 . 00 A , I 2 = 3 .0 A size 12{I rSub { size 8{2} } =3 "." 0" A"} {} , and I 3 = –2 . 00 A size 12{I rSub { size 8{3} } "=-"2 "." "00"" A"} {} . (a) Could you find the emfs? (b) What is wrong with the assumptions?

The diagram shows a complex circuit with two voltage sources E sub one and E sub two, and three resistive loads, wired in two loops and two junctions. Several points on the diagram are marked with letters a through h. The current in each branch is labeled separately.

(a) No, you would get inconsistent equations to solve.

(b) I 1 I 2 + I 3 size 12{I rSub { size 8{1} }<>I rSub { size 8{2} } +I rSub { size 8{3} } } {} . The assumed currents violate the junction rule.

Got questions? Get instant answers now!

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask