<< Chapter < Page Chapter >> Page >

Using conservation of mechanical energy to calculate the speed of a toy car

A 0.100-kg toy car is propelled by a compressed spring, as shown in [link] . The car follows a track that rises 0.180 m above the starting point. The spring is compressed 4.00 cm and has a force constant of 250.0 N/m. Assuming work done by friction to be negligible, find (a) how fast the car is going before it starts up the slope and (b) how fast it is going at the top of the slope.

The figure shows a toy race car that has just been released from a spring. Two possible paths for the car are shown. One path has a gradual upward incline, leveling off at a height of eighteen centimeters above its starting level. An alternative path shows the car descending from its starting point, making a loop, and then ascending back up and leveling off at a height of eighteen centimeters above its starting level.
A toy car is pushed by a compressed spring and coasts up a slope. Assuming negligible friction, the potential energy in the spring is first completely converted to kinetic energy, and then to a combination of kinetic and gravitational potential energy as the car rises. The details of the path are unimportant because all forces are conservative—the car would have the same final speed if it took the alternate path shown.

Strategy

The spring force and the gravitational force are conservative forces, so conservation of mechanical energy can be used. Thus,

KE i + PE i = KE f + PE f size 12{"KE""" lSub { size 8{i} } +"PE" rSub { size 8{i} } ="KE" rSub { size 8{f} } +"PE" rSub { size 8{f} } } {}

or

1 2 mv i 2 + mgh i + 1 2 kx i 2 = 1 2 mv f 2 + mgh f + 1 2 kx f 2 ,

where h size 12{h} {} is the height (vertical position) and x size 12{x} {} is the compression of the spring. This general statement looks complex but becomes much simpler when we start considering specific situations. First, we must identify the initial and final conditions in a problem; then, we enter them into the last equation to solve for an unknown.

Solution for (a)

This part of the problem is limited to conditions just before the car is released and just after it leaves the spring. Take the initial height to be zero, so that both h i size 12{h rSub { size 8{i} } } {} and h f size 12{h rSub { size 8{f} } } {} are zero. Furthermore, the initial speed v i size 12{v rSub { size 8{i} } } {} is zero and the final compression of the spring x f size 12{x rSub { size 8{f} } } {} is zero, and so several terms in the conservation of mechanical energy equation are zero and it simplifies to

1 2 kx i 2 = 1 2 mv f 2 .

In other words, the initial potential energy in the spring is converted completely to kinetic energy in the absence of friction. Solving for the final speed and entering known values yields

v f = k m x i = 250 .0 N/m 0.100 kg ( 0.0400 m ) = 2.00 m/s. alignl { stack { size 12{v rSub { size 8{f} } = sqrt { { {k} over {m} } } x rSub { size 8{i} } } {} #" "= sqrt { { {"250" "." 0" N/m"} over {0 "." "100 kg"} } } \( 0 "." "0400"" m" \) {} # " "=2 "." "00"" m/s" "." {}} } {}

Solution for (b)

One method of finding the speed at the top of the slope is to consider conditions just before the car is released and just after it reaches the top of the slope, completely ignoring everything in between. Doing the same type of analysis to find which terms are zero, the conservation of mechanical energy becomes

1 2 kx i  2 = 1  2 mv f  2 + mgh f . size 12{ { {1} over {2} } ital "kx" rSub { size 8{i} rSup { size 8{2} } } = { {1} over {2} } ital "mv" rSub { size 8{f} rSup { size 8{2} } } + ital "mgh" rSub { size 8{f} } } {}

This form of the equation means that the spring’s initial potential energy is converted partly to gravitational potential energy and partly to kinetic energy. The final speed at the top of the slope will be less than at the bottom. Solving for v f size 12{v rSub { size 8{f} } } {} and substituting known values gives

v f = kx i 2 m 2 gh f = 250.0 N/m 0.100 kg ( 0.0400 m ) 2 2 ( 9.80 m/s 2 ) ( 0.180 m ) = 0.687 m/s. alignl { stack { size 12{v rSub { size 8{f} } = sqrt { { { ital "kx" rSub { size 8{i} rSup { size 8{2} } } } over {m} } - 2 ital "gh" rSub { size 8{f} } } } {} #" "= sqrt { left ( { {"250" "." 0" N/m"} over {0 "." "100 kg"} } right )"" \( 0 "." "0400"" m" \) rSup { size 8{2} } - 2 \( 9 "." "80"" m/s" rSup { size 8{2} } \) \( 0 "." "180"" m" \) } {} # " "=0 "." "687"" m/s" "." {}} } {}

Discussion

Another way to solve this problem is to realize that the car’s kinetic energy before it goes up the slope is converted partly to potential energy—that is, to take the final conditions in part (a) to be the initial conditions in part (b).

Note that, for conservative forces, we do not directly calculate the work they do; rather, we consider their effects through their corresponding potential energies, just as we did in [link] . Note also that we do not consider details of the path taken—only the starting and ending points are important (as long as the path is not impossible). This assumption is usually a tremendous simplification, because the path may be complicated and forces may vary along the way.

Phet explorations: energy skate park

Learn about conservation of energy with a skater dude! Build tracks, ramps and jumps for the skater and view the kinetic energy, potential energy and friction as he moves. You can also take the skater to different planets or even space!

Energy Skate Park

Section summary

  • A conservative force is one for which work depends only on the starting and ending points of a motion, not on the path taken.
  • We can define potential energy ( PE ) size 12{ \( "PE" \) } {} for any conservative force, just as we defined PE g size 12{"PE" rSub { size 8{g} } } {} for the gravitational force.
  • The potential energy of a spring is PE s = 1 2 kx 2 size 12{"PE" rSub { size 8{s} } = { {1} over {2} } ital "kx" rSup { size 8{2} } } {} , where k size 12{k} {} is the spring’s force constant and x size 12{x} {} is the displacement from its undeformed position.
  • Mechanical energy is defined to be KE + PE size 12{"KE "+" PE"} {} for a conservative force.
  • When only conservative forces act on and within a system, the total mechanical energy is constant. In equation form,
KE + PE = constant     or KE i + PE i = KE f + PE f (conservative forces only),

where i and f denote initial and final values. This is known as the conservation of mechanical energy.

Conceptual questions

What is a conservative force?

Got questions? Get instant answers now!

The force exerted by a diving board is conservative, provided the internal friction is negligible. Assuming friction is negligible, describe changes in the potential energy of a diving board as a swimmer dives from it, starting just before the swimmer steps on the board until just after his feet leave it.

Got questions? Get instant answers now!

Define mechanical energy. What is the relationship of mechanical energy to nonconservative forces? What happens to mechanical energy if only conservative forces act?

Got questions? Get instant answers now!

What is the relationship of potential energy to conservative force?

Got questions? Get instant answers now!

Problems&Exercises

A 5 . 00 × 10 5 -kg size 12{5 "." "00" times "10" rSup { size 8{5} } "-kg"} {} subway train is brought to a stop from a speed of 0.500 m/s in 0.400 m by a large spring bumper at the end of its track. What is the force constant k size 12{k} {} of the spring?

7.81 × 10 5 N/m size 12{7 "." "81" times "10" rSup { size 8{5} } " N/m"} {}
Got questions? Get instant answers now!

A pogo stick has a spring with a force constant of 2 . 50 × 10 4 N/m size 12{2 "." "50" times "10" rSup { size 8{4} } " N/m"} {} , which can be compressed 12.0 cm. To what maximum height can a child jump on the stick using only the energy in the spring, if the child and stick have a total mass of 40.0 kg? Explicitly show how you follow the steps in the Problem-Solving Strategies for Energy .

Got questions? Get instant answers now!

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask