<< Chapter < Page Chapter >> Page >
apparent weight loss = weight of fluid displaced

or

apparent mass loss = mass of fluid displaced.

The next example illustrates the use of this technique.

Calculating density: is the coin authentic?

The mass of an ancient Greek coin is determined in air to be 8.630 g. When the coin is submerged in water as shown in [link] , its apparent mass is 7.800 g. Calculate its density, given that water has a density of 1 . 000 g/cm 3 size 12{1 "." "000"`"g/cm" rSup { size 8{3} } } {} and that effects caused by the wire suspending the coin are negligible.

Strategy

To calculate the coin’s density, we need its mass (which is given) and its volume. The volume of the coin equals the volume of water displaced. The volume of water displaced V w size 12{V rSub { size 8{w} } } {} can be found by solving the equation for density ρ = m V size 12{ρ= { {m} over {V} } } {} for V size 12{V} {} .

Solution

The volume of water is V w = m w ρ w size 12{V rSub { size 8{w} } = { {m rSub { size 8{w} } } over {ρ rSub { size 8{w} } } } } {} where m w size 12{m rSub { size 8{w} } } {} is the mass of water displaced. As noted, the mass of the water displaced equals the apparent mass loss, which is m w = 8 . 630 g 7 . 800 g = 0 . 830 g size 12{m rSub { size 8{w} } =8 "." "630"`g - 7 "." "800"`g=0 "." "830"`g} {} . Thus the volume of water is V w = 0 . 830 g 1 . 000 g /cm 3 = 0 . 830 cm 3 size 12{V rSub { size 8{w} } = { {0 "." "830"`g} over {1 "." "000"`"g/cm" rSup { size 8{3} } } } =0 "." "830"`"cm" rSup { size 8{3} } } {} . This is also the volume of the coin, since it is completely submerged. We can now find the density of the coin using the definition of density:

ρ c = m c V c = 8 . 630 g 0 .830 c m 3 = 10 . 4 g /cm 3 . size 12{ρ rSub { size 8{c} } = { {m rSub { size 8{c} } } over {V rSub { size 8{c} } } } = { {8 "." "630"`g} over {0 "." "830"`"g/cm" rSup { size 8{3} } } } ="10" "." 4`"g/cm" rSup { size 8{3} } } {}

Discussion

You can see from [link] that this density is very close to that of pure silver, appropriate for this type of ancient coin. Most modern counterfeits are not pure silver.

Got questions? Get instant answers now!

This brings us back to Archimedes’ principle and how it came into being. As the story goes, the king of Syracuse gave Archimedes the task of determining whether the royal crown maker was supplying a crown of pure gold. The purity of gold is difficult to determine by color (it can be diluted with other metals and still look as yellow as pure gold), and other analytical techniques had not yet been conceived. Even ancient peoples, however, realized that the density of gold was greater than that of any other then-known substance. Archimedes purportedly agonized over his task and had his inspiration one day while at the public baths, pondering the support the water gave his body. He came up with his now-famous principle, saw how to apply it to determine density, and ran naked down the streets of Syracuse crying “Eureka!” (Greek for “I have found it”). Similar behavior can be observed in contemporary physicists from time to time!

Phet explorations: buoyancy

When will objects float and when will they sink? Learn how buoyancy works with blocks. Arrows show the applied forces, and you can modify the properties of the blocks and the fluid.

Buoyancy

Section summary

  • Buoyant force is the net upward force on any object in any fluid. If the buoyant force is greater than the object’s weight, the object will rise to the surface and float. If the buoyant force is less than the object’s weight, the object will sink. If the buoyant force equals the object’s weight, the object will remain suspended at that depth. The buoyant force is always present whether the object floats, sinks, or is suspended in a fluid.
  • Archimedes’ principle states that the buoyant force on an object equals the weight of the fluid it displaces.
  • Specific gravity is the ratio of the density of an object to a fluid (usually water).

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask